Pour et deux familles de bases de , et un nombre fixe, nous considérons et deux sous-espaces engendrés par vecteurs de et respectivement. Nous étudions l’angle entre et quand tend vers l’infini. Nous démontrons que, quand et sont présents dans certaines familles définies arithmétiquement, l’angle entre et peut soit tendre vers 0, soit être minoré par une constante strictement positive. Ce comportement dépend d’un problème de valeur propre associé.
If and are two families of unitary bases for , and is a fixed number, let and be subspaces of spanned by vectors in and respectively. We study the angle between and as goes to infinity. We show that when and arise in certain arithmetically defined families, the angles between and may either tend to or be bounded away from zero, depending on the behavior of an associated eigenvalue problem.
@article{AIF_1987__37_1_175_0, author = {Brooks, Robert}, title = {On the angles between certain arithmetically defined subspaces of ${\bf C}^n$}, journal = {Annales de l'Institut Fourier}, volume = {37}, year = {1987}, pages = {175-185}, doi = {10.5802/aif.1081}, mrnumber = {89h:11022}, zbl = {0611.15003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1987__37_1_175_0} }
Brooks, Robert. On the angles between certain arithmetically defined subspaces of ${\bf C}^n$. Annales de l'Institut Fourier, Tome 37 (1987) pp. 175-185. doi : 10.5802/aif.1081. http://gdmltest.u-ga.fr/item/AIF_1987__37_1_175_0/
[1] The Bottom of the Spectrum of a Riemannian Covering, Crelles J., 357 (1985), 101-114. | MR 86h:58138 | Zbl 0553.53027
,[2] The Spectral Geometry of the Apollonian Packing, Comm. P. Appl. Math., XXXVIII (1985), 357-366. | Zbl 0575.52009
,[3] The Spectral Geometry of a Tower of Coverings, J. Diff. Geom., 23 (1986), 97-107. | MR 87j:58095 | Zbl 0576.58033
,[4] Representation Theory and Automorphic Functions, W.B. Saunders Co., 1969. | MR 38 #2093 | Zbl 0177.18003
, and ,[5] Past and Future, Math. Scand., 21 (1967), 5-16. | MR 38 #5282 | Zbl 0241.60029
and ,[6] On the Estimation of Fourier Coefficients of Modular Forms, Proc. Symp. Pure Math, VIII (1965), 1-15. | MR 32 #93 | Zbl 0142.33903
,[7] On Some Exponential Sums, Proc. Nat. Acad. Sci. USA, 34 (1948), 204-207. | MR 10,234e | Zbl 0032.26102
,