On the angles between certain arithmetically defined subspaces of 𝐂 n
Brooks, Robert
Annales de l'Institut Fourier, Tome 37 (1987), p. 175-185 / Harvested from Numdam

Pour {v i } et {w j } deux familles de bases de C n , et θ un nombre fixe, nous considérons V n et W n deux sous-espaces engendrés par [θ·n] vecteurs de {v i } et {w j } respectivement. Nous étudions l’angle entre V n et W n quand n tend vers l’infini. Nous démontrons que, quand {v i } et {w j } sont présents dans certaines familles définies arithmétiquement, l’angle entre V n et W n peut soit tendre vers 0, soit être minoré par une constante strictement positive. Ce comportement dépend d’un problème de valeur propre associé.

If {v i } and {w j } are two families of unitary bases for C n , and θ is a fixed number, let V n and W n be subspaces of C n spanned by [θ·n] vectors in {v i } and {w j } respectively. We study the angle between V n and W n as n goes to infinity. We show that when {v i } and {w j } arise in certain arithmetically defined families, the angles between V n and W n may either tend to 0 or be bounded away from zero, depending on the behavior of an associated eigenvalue problem.

@article{AIF_1987__37_1_175_0,
     author = {Brooks, Robert},
     title = {On the angles between certain arithmetically defined subspaces of ${\bf C}^n$},
     journal = {Annales de l'Institut Fourier},
     volume = {37},
     year = {1987},
     pages = {175-185},
     doi = {10.5802/aif.1081},
     mrnumber = {89h:11022},
     zbl = {0611.15003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1987__37_1_175_0}
}
Brooks, Robert. On the angles between certain arithmetically defined subspaces of ${\bf C}^n$. Annales de l'Institut Fourier, Tome 37 (1987) pp. 175-185. doi : 10.5802/aif.1081. http://gdmltest.u-ga.fr/item/AIF_1987__37_1_175_0/

[1] R. Brooks, The Bottom of the Spectrum of a Riemannian Covering, Crelles J., 357 (1985), 101-114. | MR 86h:58138 | Zbl 0553.53027

[2] R. Brooks, The Spectral Geometry of the Apollonian Packing, Comm. P. Appl. Math., XXXVIII (1985), 357-366. | Zbl 0575.52009

[3] R. Brooks, The Spectral Geometry of a Tower of Coverings, J. Diff. Geom., 23 (1986), 97-107. | MR 87j:58095 | Zbl 0576.58033

[4] Gelfand, Graev and Pyatetskii-Shapiro, Representation Theory and Automorphic Functions, W.B. Saunders Co., 1969. | MR 38 #2093 | Zbl 0177.18003

[5] H. Helson and D. Sarason, Past and Future, Math. Scand., 21 (1967), 5-16. | MR 38 #5282 | Zbl 0241.60029

[6] A. Selberg, On the Estimation of Fourier Coefficients of Modular Forms, Proc. Symp. Pure Math, VIII (1965), 1-15. | MR 32 #93 | Zbl 0142.33903

[7] A. Weil, On Some Exponential Sums, Proc. Nat. Acad. Sci. USA, 34 (1948), 204-207. | MR 10,234e | Zbl 0032.26102