Soit un corps de caractéristique , une courbe propre, lisse, et géométriquement connexe sur , et , deux points -rationnels de . On montre que toute représentation du groupe de Galois local à l’infini se prolonge en une représentation du groupe fondamental de qui est modérément ramifiée en , sous l’hypothèse que soit est séparablement clos, soit que est . Dans ce dernier cas, on montre qu’il existe un seul tel prolongement, dit “canonique”, avec la propriété que l’image du groupe fondamental géométrique ait un seul -sous-groupe de Sylow. Comme application, on donne une construction cohomologique globale de la représentation de Swan dans le cas d’égale caractéristique.
Let be a field of characteristic , a proper, smooth, geometrically connected curve over , and 0 and two -rational points on . We show that any representation of the local Galois group at extends to a representation of the fundamental group of which is tamely ramified at 0, provided either that is separately closed or that is . In the latter case, we show there exists a unique such extension, called “canonical”, with the property that the image of the geometric fundamental group has a unique -Sylow subgroup. As an application, we give a global cohomological construcion of the Swan representation in equal characteristic.
@article{AIF_1986__36_4_69_0, author = {Katz, Nicholas M.}, title = {Local-to-global extensions of representations of fundamental groups}, journal = {Annales de l'Institut Fourier}, volume = {36}, year = {1986}, pages = {69-106}, doi = {10.5802/aif.1069}, mrnumber = {88a:14032}, zbl = {0564.14013}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1986__36_4_69_0} }
Katz, Nicholas M. Local-to-global extensions of representations of fundamental groups. Annales de l'Institut Fourier, Tome 36 (1986) pp. 69-106. doi : 10.5802/aif.1069. http://gdmltest.u-ga.fr/item/AIF_1986__36_4_69_0/
[Ha] Moduli of p-covers of curves, Comm. in Algebra, 8, n° 12 (1980), 1095-1122. | MR 82f:14010 | Zbl 0471.14011
,[Ka] Gauss Sums, Kloosterman Sums, and Monodromy Groups, Annals of Math. Study, 113, to appear. | Zbl 0675.14004
,[Lau] Les constantes des équations fonctionnelles des fonctions L sur un corps global de caractéristique positive, C.R. Acad. Sc., Paris, t. 298, Série 1, n° 8 (1984), 181-184. | MR 85j:11170 | Zbl 0567.14016
,[Le] Jordan decomposition of a class of singular differential operators, Arkiv for Math., 13.1 (1975), 1-27. | MR 58 #17962 | Zbl 0305.34008
,[Ra] Caractéristique d'Euler-Poincaré d'un faisceau et cohomologie des variétés abéliennes, Séminaire Bourbaki 1964*1965, n° 286, W.A. Benjamin, New York, 1966. | Numdam | Zbl 0204.54301
,[Se-1] Corps Locaux, deuxième édition, Hermann, Paris 1968.
,[Se-2] Représentations Linéaires des Groupes Finis, troisième édition corrigée, Hermann, Paris, 1978. | MR 80f:20001 | Zbl 0407.20003
,[Sh] Profinite Groups, Arithmetic, and Geometry, Annals of Math. Study, 67, Princeton Univeristy Press, Princeton, 1972. | MR 50 #279 | Zbl 0236.12002
,Treatises.
[E.G.A.] Éléments de Géométrie Algébrique, Pub. Math. I.H.E.S., 4(I) ; 8(II) ; 11, 17(III) ; 20, 24, 28, 32(IV). | Numdam
[S.G.A.] Séminaire de Géométrie Algébrique, Springer Lecture Notes in Mathematics, 224 (SGA 1) ; 151-152-153 (SGA 3) ; 269-270-305 (SGA 4) ; 569 (SGA 4 1/2) ; 288 (SGA 7, I) ; 340 (SGA 7, II).