Dans cet article nous utilisons les résultats de notre article précédent sur l’interpolation -adique des dérivées logarithmiques des groupes formels dans le but de construire des fonctions -adiques attachées à certaines courbes elliptiques à multiplication complexe. Nos résultats portent notamment sur les courbes à réduction supersingulière.
In this paper we apply the results of our previous article on the -adic interpolation of logarithmic derivatives of formal groups to the construction of -adic -functions attached to certain elliptic curves with complex multiplication. Our results are primarily concerned with curves with supersingular reduction.
@article{AIF_1986__36_4_31_0, author = {Boxall, John L.}, title = {A new construction of ${p}$-adic $L$-functions attached to certain elliptic curves with complex multiplication}, journal = {Annales de l'Institut Fourier}, volume = {36}, year = {1986}, pages = {31-68}, doi = {10.5802/aif.1068}, mrnumber = {88c:11036}, zbl = {0608.14015}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1986__36_4_31_0} }
Boxall, John L. A new construction of ${p}$-adic $L$-functions attached to certain elliptic curves with complex multiplication. Annales de l'Institut Fourier, Tome 36 (1986) pp. 31-68. doi : 10.5802/aif.1068. http://gdmltest.u-ga.fr/item/AIF_1986__36_4_31_0/
[1] p-adic Interpolation of Logarithmic Derivatives Associated to Certain Lubin-Tate Formal Groups, Ann. Inst. Fourier, Grenoble, 36, 3 (1986), to appear. | Numdam | MR 88f:11113 | Zbl 0587.12007
,[2] On p-adic L-functions Attached to Elliptic Curves with Complex Multiplication (to appear).
,[3] On the Units of Algebraic Number Fields, Mathematika, 14 (1967), 121-124. | MR 36 #3746 | Zbl 0171.01105
,[4] Some Remarks on the Main Conjecture for Elliptic Curves with Complex Multiplication, Amer J. Math., 105 (1983), 337-366. | MR 85d:11100 | Zbl 0524.14023
and ,[5] On the Conjecture of Birch and Swinnerton-Dyer, Inventiones Math., 39 (1977), 223-251. | MR 57 #3134 | Zbl 0359.14009
and ,[6] On p-adic L-functions and Elliptic Units, J. Austral. Math. Soc., ser. A, 26 (1978), 1-25. | MR 80a:12007 | Zbl 0442.12007
and ,[7] L-functions of Elliptic Curves with Complex Multiplication, Acta Arith., 17 (1970), 287-301. | MR 44 #2758 | Zbl 0209.24603
,[8] Groupes d'Unités Elliptiques, Bull. Soc. Math. France, 107 (1979), 305-317. | Numdam | MR 81c:12009 | Zbl 0434.12003
and ,[9] Séries d'Eisenstein et Fonctions L de Courbes Elliptiques à Multiplication Complexe, Crelle's J., 327 (1981), 184-218. | MR 82m:12007 | Zbl 0456.12007
and ,[10] Lectures on p-adic L-functions, Annals of Math. Studies, 74 P.U.P. (1972). | MR 50 #12974 | Zbl 0236.12001
,[11] Ùber eine allgemeine Eigenschaft der rationale Entwicklungs coefficienten einer bestimmten Gattung analysischer Functionen, Crelle's J., 41 (1851), 368-372, (= Collected Works vol. 1, pp. 358-362 Springer-Verlag (1975)).
,[12] Eine p-adische Theorie der Zetawerte, Crelle's J., 214/215 (1964), 328-339. | MR 29 #1199 | Zbl 0186.09103
and ,[13] p-adic Interpolation of Real-Analytic Eisenstein Series, Annals of Math., 104 (1976), 459-571. | MR 58 #22071 | Zbl 0354.14007
,[14] The Eisenstein Measure and p-adic Interpolation, Amer. J. Math., 99 (1977), 238-311. | MR 58 #5602 | Zbl 0375.12022
,[15] Formal Groups and p-adic Interpolation, Astérisque, 41-42 (1977), 55-65. | MR 56 #319 | Zbl 0351.14024
,[16] Divisibilities, Congruences and Cartier Duality, J. Fac. Sci. Univ. Tokyo, Ser. 1A, 28 (1982), 667-678. | Zbl 0559.14032
,[17] Elliptic Functions, Addison Wesley (1973). | MR 53 #13117 | Zbl 0316.14001
,[18] Eine p-adische Theorie der Zetawerte II, Crelle's J., 274/275 (1975), 224-239. | MR 52 #351 | Zbl 0309.12009
,[19] On p-adic L-functions Associated to Elliptic Curves, Inventiones Math., 56 (1980), 19-55. | MR 81j:12013 | Zbl 0425.12017
,[20] One-Parameter Formal Lie Groups over p-adic Integer Rings, Annals of Math., 80 (1964), 464-484. | MR 29 #5827 | Zbl 0135.07003
,[21] Arithmetic of Weil Curves, Inventiones Math., 25 (1974), 1-61. | MR 50 #7152 | Zbl 0281.14016
and ,[22] Class fields of Abelian extensions of Q, Invent. Math., 76 (1984), 179-330. | MR 85m:11069 | Zbl 0545.12005
and ,[23] Unités Elliptiques, Bull. Soc. Math. France, Mémoire 36 (1973). | Numdam | Zbl 0314.12006
,[24] Congruences for Special Values of L-functions of Elliptic Curves with Complex Multiplication, Invent. Math., 71 (1983), 339-364. | MR 84h:12018 | Zbl 0513.14012
,[25] Formes Modulaires et Fonction Zêta p-adiques, in Springer Lecture Notes in Math., 350 (1973), 191-268. | MR 53 #7949a | Zbl 0277.12014
,[26] Good Reduction of Abelian Varieties, Annals of Math., 88 (1968), 492-517. | MR 38 #4488 | Zbl 0172.46101
and ,[27]
, Ph. D. Thesis, Princeton University (1984).[28] p-divisible Groups, Proc. Conf. on Local Fields, Ed. T. Springer, Springer-Verlag (1967), 158-183. | MR 38 #155 | Zbl 0157.27601
,[29] p-adic Hecke Series of Imaginary Quadratic Fields, Math. USSR Sbornik, 24 (1974), 345-371. | Zbl 0329.12016
and ,[30] Introduction to Cyclotomic Fields, Graduate Texts in Math., Springer-Verlag (1982). | MR 85g:11001 | Zbl 0484.12001
,[31] Elliptic Functions According to Eisenstein and Kronecker, Springer-Verlag (1976). | MR 58 #27769a | Zbl 0318.33004
,[32] On the Two-Variable p-adic L-function, Annals of Math., 115 (1982), 411-449. | MR 84b:14020 | Zbl 0496.12010
,[33] p-adic Measures on Galois Groups, Inventiones Math., 76 (1984), 331-343. | MR 86b:11045 | Zbl 0555.12006
,