Soit une fonction radiale, non négative, localement intégrable sur , qui ne s’accroît pas en . Posons où et . Étant donné et , nous démontrons qu’il existe de sorte que pour tout , si et seulement si, existe avec pour tout cube dyadique , où .
On se sert de ce résultat pour raffiner des approximations récentes de la part de C.L. Fefferman et D.H. Phong de la distribution de valeurs propres d’opérateurs de Schrödinger.
Suppose is a nonnegative, locally integrable, radial function on , which is nonincreasing in . Set when and . Given and , we show there exists so that for all , if and only if exists with for all dyadic cubes Q, where . This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.
@article{AIF_1986__36_4_207_0, author = {Kerman, R. and Sawyer, Eric T.}, title = {The trace inequality and eigenvalue estimates for Schr\"odinger operators}, journal = {Annales de l'Institut Fourier}, volume = {36}, year = {1986}, pages = {207-228}, doi = {10.5802/aif.1074}, mrnumber = {88b:35150}, zbl = {0591.47037}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1986__36_4_207_0} }
Kerman, R.; Sawyer, Eric T. The trace inequality and eigenvalue estimates for Schrödinger operators. Annales de l'Institut Fourier, Tome 36 (1986) pp. 207-228. doi : 10.5802/aif.1074. http://gdmltest.u-ga.fr/item/AIF_1986__36_4_207_0/
[1] A trace inequality for generalized potentials, Studia Math., 48 (1973), 99-105. | MR 49 #1091 | Zbl 0237.46037
,[2] On the existence of capacitary strong type estimates in Rn, Ark. Mat., 14 (1976), 125-140. | MR 54 #5822 | Zbl 0325.31008
,[3] Lectures on Lp-potential theory (preprint), Univ. of Umeä, 2 (1981).
,[4] Theory of Bessel potentials I, Ann. Inst. Fourier, 11 (1961), 385-475. | Numdam | MR 26 #1485 | Zbl 0102.32401
and ,[5] Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv., 60 (1985), 217-246. | MR 87d:42027 | Zbl 0575.42025
, and ,[6] Lp estimates for fractional integrals and Sobolev inequalities, with applications to Schrödinger operators, Comm. Partial Differential Equations, 10 (1985), 1077-1116. | MR 87d:42028 | Zbl 0578.46024
and ,[7] Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241-250. | MR 50 #10670 | Zbl 0291.44007
and ,[8] Regularity properties of Riesz potentials, Ind. U. Math. J., 28 (1979), 257-268. | MR 80g:31004 | Zbl 0413.31003
,[9] The local regularity of solutions of degenerate elliptic equations, Comm. in P.D.E., 7 (1982), 77-116. | MR 84i:35070 | Zbl 0498.35042
, and ,[10] The Uncertainty Principle, Bull. A.M.S., (1983), 129-206. | MR 85f:35001 | Zbl 0526.35080
,[11] Differentiation of Integrals in Rn, Lecture Notes in Math., vol. 481, Springer-Verlag, Berlin and New York, 1975. | MR 56 #15866 | Zbl 0327.26010
,[12] Continuity and compactness of certain convolution operators, Institut Mittage-Leffler, Report No. 9, (1982).
,[13] Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transforms and Carleson measures, announcement in Bull. A.M.S., 12 (1985), 112-116. | MR 86m:35126 | Zbl 0564.35027
and ,[14] On capacitary estimates of the strong type for the fractional norm, Zap. Sen. LOMI Leningrad, 70 (1977), 161 - 168. | Zbl 0433.46032
,[15] Weighted norm inequalities for fractional integrals, Trans. A.M.S., 192 (1974), 251-275. | MR 49 #5275 | Zbl 0289.26010
and ,[16] Methods of Mathematical Physics, Vol. I, Academic Press, New York and London, 1972. | Zbl 0242.46001
and ,[17] Weighted norm inequalities for fractional maximal operators, C.M.S. Conf. Proc., 1 (1980), 283-309. | MR 83k:42020a | Zbl 0546.42018
,[18] A characterization of a two-weight norm inequality for maximal operators, Studia Math., 75 (1982), 1-11. | MR 84i:42032 | Zbl 0508.42023
,[19] The characterization of functions arising as potentials I, Bull. Amer. Math. Soc., 67 (1961), 102-104, II (IBID), 68 (1962), 577-582. | Zbl 0127.32002
,[20] Singular Integrals and Differentiability Properties of Functions, 2nd edition, Princeton University Press, 1970. | MR 44 #7280 | Zbl 0207.13501
,[21] Fractional integrals on weighted Hp and Lp spaces, Trans. Amer. Math., Soc., 287 (1985), 293-321. | Zbl 0524.42011
and ,