En regroupant des résultats de C. S. Herz sur l’algèbre de Fourier et la notion de contraction des groupes de Lie on peut développer une méthode de transfert qui donne des théorèmes de passage pour les multiplicateurs de , soit de l’algèbre de Lie, soit du groupe de déplacements de Cartan associé à un groupe de Lie compact, sur le groupe lui-même.
By combining some results of C. S. Herz on the Fourier algebra with the notion of contractions of Lie groups, we prove theorems which allow transference of multipliers either from the Lie algebra or from the Cartan motion group associated to a compact Lie group to the group itself.
@article{AIF_1986__36_4_107_0, author = {Dooley, Anthony H.}, title = {Transferring $L^p$ multipliers}, journal = {Annales de l'Institut Fourier}, volume = {36}, year = {1986}, pages = {107-136}, doi = {10.5802/aif.1070}, mrnumber = {88f:43007}, zbl = {0589.43003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1986__36_4_107_0} }
Dooley, Anthony H. Transferring $L^p$ multipliers. Annales de l'Institut Fourier, Tome 36 (1986) pp. 107-136. doi : 10.5802/aif.1070. http://gdmltest.u-ga.fr/item/AIF_1986__36_4_107_0/
[1] Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier, 24-1 (1974), 149-172. | Numdam | MR 50 #14065 | Zbl 0273.22011
,[2] Une formule asymptotique du type Mehler-Heine pour les zonales d'un espace riemannien, Studia Math., 57 (1976), 27-32. | MR 54 #13476 | Zbl 0335.43010
,[3] Analyse harmonique sur certains espaces homogènes, Lecture notes in mathematics, vol 242, Springer-Verlag, Berlin, Heidelberg, New York (1971). | Zbl 0224.43006
and ,[4] Central multiplier theorems for compact Lie groups, Bull. Amer. Math. Soc., 80 (1974), 124-126. | MR 48 #9271 | Zbl 0276.43009
and ,[5] An extension of De Leeuw's theorem to the n-dimensional rotation group, Ann. Inst. Fourier, Grenoble, 34-2 (1984), 111-135. | Numdam | MR 86a:43002 | Zbl 0523.43002
and ,[6] On Lp multipliers of Cartan motion groups, Journal of Functional Analysis, To appear | Zbl 0597.43005
and ,[7] On contractions of semisimple Lie groups, Trans Amer. Math. Soc., (1985), 185-202. | MR 86g:22019 | Zbl 0546.22017
and ,[8] Algèbres Ap et convoluteurs de Lp, Séminaire Bourbaki, 367 (1969-1970). | Numdam | Zbl 0264.43006
,[9] Differential geometry, Lie groups and symmetric space, Academic Press, New York (1981).
,[10] Une généralisation de la notion de transformée de Fourier-Stieljes, Ann. Inst. Fourier, Grenoble, 24-3 (1974), 145-157. | Numdam | MR 54 #13466 | Zbl 0287.43006
,[11] Asymmetry of norms of convolution operators II, Symposia Mathematica, 22 (1977), 223-230. | MR 58 #6932 | Zbl 0384.43007
,[12] Abstract Harmonic Analysis, Vol. I, Springer-Verlag Berlin, Heidelberg, New York (1963).
and ,[13] Abstract Harmonic Analysis, Vol. II, Springer-Verlag Berlin, Heidelberg, New York (1970). | Zbl 0213.40103
and ,[14] An introduction to Lie algebras, Springer-Verlag, Berlin, Heidelberg, New York (1972). | MR 48 #2197 | Zbl 0254.17004
,[15] Harmonic analysis on the group of rigid motions of the euclidean plane, Studia Math., 57 (1978), 125-141. | MR 58 #2030 | Zbl 0394.43008
,[16] Topics in harmonic analysis related to the Littlewood - Paley theory, Annals of Mathematics Studies, No. 63 Princeton N. J. (1970). | MR 40 #6176 | Zbl 0193.10502
,[17] Special Functions and the theory of group representations, Transl. Amer. Math. Soc., 22 (1968). | MR 37 #5429 | Zbl 0172.18404
,[18] A multiplier theorem for SU(n), Proc. Amer. Math. Soc., 59 (1976), 366-370. | MR 54 #8156 | Zbl 0298.22012
,