The Dirichlet problem for the biharmonic equation in a Lipschitz domain
Dahlberg, Björn E. J. ; Kenig, C. E. ; Verchota, G. C.
Annales de l'Institut Fourier, Tome 36 (1986), p. 109-135 / Harvested from Numdam

Dans cet article nous étudions le problème de Dirichlet pour l’opérateur biharmonique Δ 2 , dans un domaine borné lipschitzien quelconque D dans R n , et nous donnons des bornes optimales. Nous démontrons des résultats d’existence et d’unicité quand les valeurs au bord ont des dérivées dans L 2 (D), et la dérivée normale appartient à L 2 (D). La solution qu’on obtient prend les valeurs au bord dans le sens de la convergence non-tangentielle, et la fonction maximale non-tangentielle de u appartient à L 2 (D).

In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator Δ 2 , on an arbitrary bounded Lipschitz domain D in R n . We establish existence and uniqueness results when the boundary values have first derivatives in L 2 (D), and the normal derivative is in L 2 (D). The resulting solution u takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of u is shown to be in L 2 (D).

@article{AIF_1986__36_3_109_0,
     author = {Dahlberg, Bj\"orn E. J. and Kenig, C. E. and Verchota, G. C.},
     title = {The Dirichlet problem for the biharmonic equation in a Lipschitz domain},
     journal = {Annales de l'Institut Fourier},
     volume = {36},
     year = {1986},
     pages = {109-135},
     doi = {10.5802/aif.1062},
     mrnumber = {88a:35070},
     zbl = {0589.35040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1986__36_3_109_0}
}
Dahlberg, Björn E. J.; Kenig, C. E.; Verchota, G. C. The Dirichlet problem for the biharmonic equation in a Lipschitz domain. Annales de l'Institut Fourier, Tome 36 (1986) pp. 109-135. doi : 10.5802/aif.1062. http://gdmltest.u-ga.fr/item/AIF_1986__36_3_109_0/

[1] J. Cohen and J. Gosselin, The Dirichlet problem for the biharmonic equation in a C1 domain in the plane, Indiana U. Math. J., Vol 32, 5 (1983), 635-685. | MR 85b:31004 | Zbl 0534.31003

[2] R. Coifman, A. Mc Intosh and Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Annals of Math., 116 (1982), 361-387. | MR 84m:42027 | Zbl 0497.42012

[3] R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-differentiels, Asterisque, 57 (1978). | MR 81b:47061 | Zbl 0483.35082

[4] A. Cordoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math., 57 (1976), 97-101. | MR 54 #8132 | Zbl 0356.44003

[5] B. Dahlberg, On estimates of harmonic measure, Arch. for Rational Mech. and Anal., 65 (1977), 272-288. | MR 57 #6470 | Zbl 0406.28009

[6] B. Dahlberg, On the Poisson integral for Lipschitz and C1 domains, Studia Math., 66 (1979), 13-24. | MR 81g:31007 | Zbl 0422.31008

[7] B. Dahlberg, Weighted norm inequalities for the Lusin area integral and the non-tangential maximal functions for functions harmonic in a Lipschitz domain, Studia Math., 67 (1980), 297-314. | MR 82f:31003 | Zbl 0449.31002

[8] B. Dahlberg and C. Kenig, Hardy spaces and the Lp Neumann problem for Laplace's equation in a Lipschitz domain, to appear in Annals of Math. | Zbl 0658.35027

[9] B. Dahlberg and C. Kenig, Area integral estimate for higher order boundary value problems on Lipschitz domains, in preparation.

[10] C. Fefferman and E. Stein, Hp space of several variables, Acta Math., 129 (1972), 137-193. | MR 56 #6263 | Zbl 0257.46078

[11] D. Jerison and C. Kenig, The dirichlet problem in non-smooth domains, Annals of Math., 113 (1981), 367-382. | MR 84j:35076 | Zbl 0434.35027

[12] D. Jerison and C. Kenig, The Neumann problem on Lipschitz domain, Bull AMS, Vol 4 (1981), 103-207. | MR 84a:35064 | Zbl 0471.35026

[13] D. Jerison and C. Kenig, Boundary value problems on Lipschitz domain, MAA Studies in Mathematics, vol 23, Studies in Partial differential Equations, W. Littmann, editor (1982), 1-68. | MR 85f:35057 | Zbl 0529.31007

[14] C. Kenig, Recent progress on boundary values problems on Lipschitz domain, Proc. of Symp. in Pure Math., Vol 43 (1985), 175-205. | MR 87e:35029 | Zbl 0593.35038

[15] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 192 (1974), 261-274. | MR 49 #5275 | Zbl 0289.26010

[16] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.

[17] E. Stein and G. Weiss, On the theory of harmonic functions of several variables, I, Acta Math., 103 (1960), 25-62. | MR 22 #12315 | Zbl 0097.28501

[18] G.C. Verchota, Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains, Thesis, University of Minnesota (1982), J. of Functional Analysis, 59 (1984), 572-611. | Zbl 0589.31005

[19] G.C. Verchota, The Dirichlet problem for biharmonic functions in C1 domains, preprint. | Zbl 0644.35039