Nous démontrons que si la courbure sectionnelle d’une variété riemannienne compacte de dimension 6 satisfait à la condition alors son troisième (réel) nombre de Betti est nul.
We prove that if the sectional curvature, , of a compact 6-manifold without boundary satisfies then its third (real) Betti number is zero.
@article{AIF_1986__36_2_83_0, author = {Seaman, Walter}, title = {The third Betti number of a positively pinched riemannian six manifold}, journal = {Annales de l'Institut Fourier}, volume = {36}, year = {1986}, pages = {83-92}, doi = {10.5802/aif.1049}, mrnumber = {87k:53096}, zbl = {0578.53031}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1986__36_2_83_0} }
Seaman, Walter. The third Betti number of a positively pinched riemannian six manifold. Annales de l'Institut Fourier, Tome 36 (1986) pp. 83-92. doi : 10.5802/aif.1049. http://gdmltest.u-ga.fr/item/AIF_1986__36_2_83_0/
[1] An Infinite Family of Distinct 7-Manifolds Admitting Positively Curved Riemannian Metrics, Bull. A.M.S., 81 (1975), 93-97. | MR 51 #6851 | Zbl 0362.53033
and ,[2] Sur quelques variétés riemanniennes suffisamment pincées, Bull. Soc. Math. Fr., 88 (1960), 57-71. | Numdam | MR 24 #A3606 | Zbl 0096.15503
,[3] Sur les variétés riemanniennes pincées just au-dessous de 1/4, Ann. Inst. Fourier, Grenoble, 33-2 (1983), 135-150. | Numdam | MR 85d:53017 | Zbl 0497.53044
,[4] Calibrations on R6, Duke Math. J., 50 (1983), 1231-1243. | MR 85a:53056 | Zbl 0535.49030
and ,[5] Curvature and Homology, Dover Publications, 1962, 1982. | Zbl 0105.15601
,[6] Le second nombre de Betti d'une variété riemannienne (1/4 - ε) - pincée de dimension 4, Ann. Inst. Fourier, Grenoble, 33-2 (1983), 167-182. | Numdam | MR 85f:53045 | Zbl 0486.53033
,[7] The Exterior Algebra ΛkRn and Area Minimization, Linear Algebra and its Applications, 66 (1985), 1-28. | MR 86i:53036 | Zbl 0585.49029
,[8] Differential Geometric Structures, McGraw Hill Book Co., 1981. | MR 83k:53002 | Zbl 0493.53027
,[9] Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. Math., 96 (1972), 277-295. | MR 46 #6243 | Zbl 0261.53033
,