Si désigne la capacité de Bessel des sous-ensembles de l’espace euclicien de dimension , , , associé naturellement avec l’espace des potentiels de Bessel des fonctions -functions, alors notre résultat principal est l’estimation suivante : pour , il existe une constante de telle sorte que pour n’importe quel ensemble ,
pour tous les cubes ouverts dans l’espace de dimension . Ici, est le bord de l’ensemble dans la topologie —fine — c’est-à-dire la topologie minimale sur l’espace de dimension qui rend continu les potentiels -non-linéaires associés. Par conséquent, nous déduisons que pour , les ensembles ouverts et connexes sont connexes dans la -quasi-topologie (c’est-à-dire la topologie engendrée par la fonction de l’ensemble au sens de Fuglede) et que les ensembles -finement ouverts -finement connexes sont connexes par arcs. Nos méthodes sont basées sur les propriétés de Kellog-Choquet des capacités et certains aspects de la théorie de la mesure géométrique. Le cas newtonien classique correspond au cas , et .
If denotes the Bessel capacity of subsets of Euclidean -space, , , naturally associated with the space of Bessel potentials of -functions, then our principal result is the estimate: for , there is a constant such that for any set
for all open cubes in -space. Here is the boundary of the in the -fine topology i.e. the smallest topology on -space that makes the associated -linear potentials continuous there. As a consequence, we deduce that for , open connected sets are connected in the -quasi topology (i.e. the topology generated by the set function in the sense of Fuglede), and the -finely open -finely connected sets are arcwise connected. Our methods rely on the Kellog-Choquet properties of the capacities and aspects of geometric measure theory. The classical Newtonian case corresponds to the case , and .
@article{AIF_1985__35_1_57_0, author = {Adams, David R. and Lewis, John L.}, title = {Fine and quasi connectedness in nonlinear potential theory}, journal = {Annales de l'Institut Fourier}, volume = {35}, year = {1985}, pages = {57-73}, doi = {10.5802/aif.998}, mrnumber = {86h:31009}, zbl = {0545.31012}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1985__35_1_57_0} }
Adams, David R.; Lewis, John L. Fine and quasi connectedness in nonlinear potential theory. Annales de l'Institut Fourier, Tome 35 (1985) pp. 57-73. doi : 10.5802/aif.998. http://gdmltest.u-ga.fr/item/AIF_1985__35_1_57_0/
[1] Traces of potentials. II., Ind. U. Math. J., 22 (1973), 907-918. | MR 47 #2337 | Zbl 0265.46039
,[2] Lectures on Lp-potential theory, Umeå Univ. Reports, no. 2 (1981).
,[3] Inclusion relations among fine topologies in non-linear potential theory, Ind. U. Math. J., 33 (1984), 117-126. | MR 726108 | MR 85c:31011 | Zbl 0545.31011
and ,[4] Thinness and Wiener criteria for non-linear potentials, Ind. U. Math. J., 22 (1972), 169-197. | MR 316724 | MR 47 #5272 | Zbl 0244.31012
, and ,[5] On topologies and boundaries in potential theory, Lecture Notes in Math. 175, Springer-Verlag. | MR 281940 | MR 43 #7654 | Zbl 0222.31014 | Zbl 0277.31002
,[6] Paths for subharmonic functions, Proc. London Math. Soc., 48 (1984), 401-427. | MR 735222 | MR 85m:31002 | Zbl 0541.31001
and ,[7] Connexion en topologie fine et balayage des mesures, Ann. Inst. Fourier, 21-3 (1971), 227-244. | Numdam | MR 344502 | MR 49 #9241 | Zbl 0208.13802
,[8] The quasi topology associated with a countably subadditive set function, Ann. Inst. Fourier, 21-1 (1971), 123-169. | Numdam | MR 283158 | MR 44 #391 | Zbl 0197.19401
,[9] On the instability of capacity, Ark. Mat., 15 (1971), 241-252. | MR 463463 | Zbl 0372.31003
,[10] Geometric Measure Theory, Springer-Verlag, 1969. | MR 41 #1976 | Zbl 0176.00801
,[11] Approximately continuous transformations, Proc. Amer. Math. Soc., 12 (1961), 116-121. | MR 22 #11082 | Zbl 0096.17103
and ,[12] Non-linear potentials and approximation in the mean by analytic functions, Math. Z., 129 (1972), 299-319. | MR 48 #6430 | Zbl 0236.31010
,[13] Thin sets in non-linear potential theory, Ann. Inst. Fourier, 33-4 (1983), 161-187. | Numdam | MR 85f:31015 | Zbl 0508.31008
and ,[14] Finely holomorphic functions, J. Func. Anal., 37 (1980), 1-18. | MR 82d:31011a | Zbl 0459.46038
,[15] Non-linear potential theory, Russian Math. Surveys, 27 (1972), 71-148. | Zbl 0269.31004
and ,[16] A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292. | MR 43 #3474 | Zbl 0242.31006
,[17] Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166. | MR 51 #3477 | Zbl 0334.31004
,[18] Continuity of Bessel potentials, Israel J. Math., 11 (1972), 271-283. | MR 46 #374 | Zbl 0256.31009
,[19] Uber approximativ statige Funktionen von zwei (und mehreren) Veranderlichen, Fund. Math., 13 (1927), 201-209. | JFM 55.0145.01
,