Nous considérons l’ensemble des homomorphismes à valeurs complexes d’une algèbre uniforme qui sont faiblement continus par rapport à une mesure prédéterminée . Nous définissons les -parties de et nous obtenons un théorème de décomposition pour les mesures dans tel que les éléments de la somme soient mutuellement absolument continus par rapport aux mesures représentatives. L’ensemble est étudié pour les algèbres -invariantes définies sur les sous-ensembles compacts du plan complexe ou encore pour l’algèbre du polydisque infini.
We consider the set of complex-valued homomorphisms of a uniform algebra which are weak-star continuous with respect to a fixed measure . The -parts of are defined, and a decomposition theorem for measures in is obtained, in which constituent summands are mutually absolutely continuous with respect to representing measures. The set is studied for -invariant algebras on compact subsets of the complex plane and also for the infinite polydisc algebra.
@article{AIF_1985__35_1_149_0, author = {Cole, B. J. and Gamelin, Theodore W.}, title = {Weak-star continuous homomorphisms and a decomposition of orthogonal measures}, journal = {Annales de l'Institut Fourier}, volume = {35}, year = {1985}, pages = {149-189}, doi = {10.5802/aif.1004}, mrnumber = {86m:46051}, zbl = {0546.46042}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1985__35_1_149_0} }
Cole, B. J.; Gamelin, Theodore W. Weak-star continuous homomorphisms and a decomposition of orthogonal measures. Annales de l'Institut Fourier, Tome 35 (1985) pp. 149-189. doi : 10.5802/aif.1004. http://gdmltest.u-ga.fr/item/AIF_1985__35_1_149_0/
[1]An Invitation to C* Algebras, Springer-Verlag, 1976. | MR 58 #23621 | Zbl 0344.46123
,[2]Abstract analytic function theory and Hardy algebras, Lecture Notes in Math., vol. 593, Springer-Verlag, 1977. | MR 56 #1071 | Zbl 0373.46062
and ,[3]Introduction to Function Algebras, Benjamin, 1969. | MR 39 #7431 | Zbl 0199.46103
,[4]Adhérence faible étoile d'algèbres de fractions rationnelles, Ann. Inst. Fourier, Grenoble, 24,4 (1974), 93-120. | Numdam | MR 53 #14141 | Zbl 0287.46065
,[5]Tight uniform algebras, Journal of Functional Analysis, 46 (1982), 158-220. | MR 83h:46065 | Zbl 0569.46034
and ,[6]Subnormal operators, Research Notes in Mathematics # 51, Pitman, 1981. | MR 83i:47030 | Zbl 0474.47013
,[7]Spectral mapping theorems for subnormal operators, J. Funct. Anal., 56 (1984), 360-387. | MR 85j:47024 | Zbl 0538.47013
,[8]Uniform Algebras, Prentice-Hall, 1969. | MR 53 #14137 | Zbl 0213.40401
,[9]Rational Approximation Theory, course lecture notes, UCLA, 1975.
,[10]Uniform algebras on plane sets, in Approximation Theory, Academic Press, 1973, pp. 100-149. | MR 49 #3548 | Zbl 0325.30035
,[11]Bounded approximation by rational functions, Pac. J. Math., 45 (1973), 129-150. | MR 54 #3413 | Zbl 0244.30038
and ,[12]Recent results on function algebras, CBMS Regional Conference Series in Mathematics, vol. 11, Am. Math. Society, 1972. | MR 47 #3999 | Zbl 0247.46062
,[13]Equivalence of certain representing measures, Proc. A.M.S., 82 (1981), 374-376. | MR 83j:46066 | Zbl 0483.46029
,[14]Extension of positive weak*-continuous functionals, Duke Math. J., 34 (1967), 453-466. | MR 37 #763 | Zbl 0155.45701
and ,[15]The abstract F. and M Riesz theorem, Duke Math. J., 36 (1969), 791-797. | MR 44 #4526 | Zbl 0201.45704
and ,[16]Finely holomorphic functions, J. Funct. Anal., 37 (1980), 1-18. | MR 82d:31011a | Zbl 0459.46038
,[17]Weak-star density of polynomials, J. Reine Angew Math., 252 (1972), 1-15. | MR 45 #4156 | Zbl 0242.46023
,