Soit un groupe localement compact, pour , soit l’adhérence de dans les opérateurs de convolution de . Désignons par le dual de qui est contenu dans l’espace des multiplicateurs ponctuels de l’espace de Figà-Talamanca Herz . On démontre que sur la sphère unité de , la topologie et la topologie forte, comme multiplicateurs de , coïncident.
Let be a locally compact group, for let denote the closure of in the convolution operators on . Denote the dual of which is contained in the space of pointwise multipliers of the Figa-Talamanca Herz space . It is shown that on the unit sphere of the topology and the strong -multiplier topology coincide.
@article{AIF_1985__35_1_125_0, author = {Fendler, Gero}, title = {An $L^p$-version of a theorem of D.A. Raikov}, journal = {Annales de l'Institut Fourier}, volume = {35}, year = {1985}, pages = {125-135}, doi = {10.5802/aif.1002}, mrnumber = {86h:43003}, zbl = {0543.43003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1985__35_1_125_0} }
Fendler, Gero. An $L^p$-version of a theorem of D.A. Raikov. Annales de l'Institut Fourier, Tome 35 (1985) pp. 125-135. doi : 10.5802/aif.1002. http://gdmltest.u-ga.fr/item/AIF_1985__35_1_125_0/
[1] The spaces Lp with mixed norm, Duke Math. J., 28 (1961), 301-324. | MR 126155 | MR 23 #A3451 | Zbl 0107.08902
and ,[2] Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Notes Series 2, Cambridge 1971. | MR 288583 | MR 44 #5779 | Zbl 0207.44802
and ,[3] An application of Littlewood-Paley theory in harmonic analysis, Math. Ann., 241 (1979), 83-69. | MR 531153 | MR 81f:43003 | Zbl 0399.43004
,[4] On representations in Banach spaces, Math. Ann., 266 (1984), 307-315. | MR 730172 | MR 85j:46083 | Zbl 0508.46035
and ,[5] Algèbres Ap et convoluteurs de Lp, Séminaire Bourbaki 22è année, 1969/1970, no. 367. | Numdam | Zbl 0264.43006
,[6] An application of the Radon Nikodym property in harmonic analysis, Bollentino U.M.I., (5) 18-B (1981), 663-671. | MR 629430 | MR 83b:43004 | Zbl 0493.46018
,[7] On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra B(G) and of the measure algebra M(G), Rocky Moutain J. of Math., 11 (1981), 459-472. | MR 722579 | MR 85f:43009 | Zbl 0502.43004
and ,[8] Une généralisation de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier, Grenoble, 24-3 (1974), 145-157. | Numdam | MR 425511 | MR 54 #13466 | Zbl 0287.43006
,[9] Harmonic synthesis for subgroups, Ann. Inst. Fourier Grenoble, 23-3 (1973), 91-123. | Numdam | MR 355482 | MR 50 #7956 | Zbl 0257.43007
,[10] An “alternierende Verfahen” for general positive operators, Bull. A.M.S., 68 (1962), 95-102. | MR 24 #A3671 | Zbl 0116.10403
,[11] Topics in harmonic analysis related to the Littlewood-Paley theorem, Princeton University Press, 1970. | Zbl 0193.10502
,