Topological triviality of versal unfoldings of complete intersections
Damon, James
Annales de l'Institut Fourier, Tome 34 (1984), p. 225-251 / Harvested from Numdam

On obtient des conditions algébriques et géométriques qui impliquent la trivialité topologique des déploiements versels des intersections complètes quasi-homogènes le long des sous-espaces correspondant aux déformations de poids maximal. On les applique : à certaines familles infinies de singularités de surfaces de C 4 commençant par des singularités unimodulaires exceptionnelles, à l’intersection de paires de quadriques, et à quelques singularités de courbes.

Ces conditions algébriques sont reliées à l’opération d’adjoindre une puissance qui généralise aux intersections complètes la construction de Thom-Sabastiani. On démontre un résultat de dualité qui relie le fait que l’algèbre jacobienne de f est de Gorenstein et le fait que N ˜(F) * est principal, c’est-à-dire engendré par un élément (ici on obtient F en adjoignant une puissance à f, N ˜(F) * désigne le dual de l’espace des déformations infinitésimales non-triviales).

We obtain algebraic and geometric conditions for the topological triviality of versal unfoldings of weighted homogeneous complete intersections along subspaces corresponding to deformations of maximal weight. These results are applied: to infinite families of surface singularities in C 4 which begin with the exceptional unimodular singularities, to the intersection of pairs of generic quadrics, and to certain curve singularities.

The algebraic conditions are related to the operation of adjoining powers, a generalization for complete intersections of a special form of the Thom-Sebastiani operation. A duality result is proven which relates the Jacobian algebra of f being Gorenstein with N ˜(F) * being principal, i.e. generated by one element (here F is obtained from f by adjoining powers, and N ˜(F) * is the dual of the space of non-trivial infinitesimal deformations.

@article{AIF_1984__34_4_225_0,
     author = {Damon, James},
     title = {Topological triviality of versal unfoldings of complete intersections},
     journal = {Annales de l'Institut Fourier},
     volume = {34},
     year = {1984},
     pages = {225-251},
     doi = {10.5802/aif.995},
     mrnumber = {86a:58011},
     zbl = {0534.58010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1984__34_4_225_0}
}
Damon, James. Topological triviality of versal unfoldings of complete intersections. Annales de l'Institut Fourier, Tome 34 (1984) pp. 225-251. doi : 10.5802/aif.995. http://gdmltest.u-ga.fr/item/AIF_1984__34_4_225_0/

[1] V. I. Arnold, Local Normal Forms of Functions, Invent. Math., 35 (1976), 87-109. | MR 57 #7646 | Zbl 0336.57022

[2] J. W. Bruce, A Stratification of the Space of Cubic Surfaces, Math. Proc. Camb. Phil. Soc., 87 (1980), 427-441. | MR 81c:14022 | Zbl 0434.58009

[3] J. W. Bruce and P. J. Giblin, A Stratification of the Space of Plane Quartic Curves, Proc. London Math. Soc., (3) 42 (1981), 270-298. | MR 82j:14022 | Zbl 0403.14004

[3a] D. Buchbaum and D. Eisenbud, Algebraic structure for finite free resolutions and some structure theorems for ideals of codimension 3, Amer, J. Math., 99 (1977), 447-485. | Zbl 0373.13006

[4] J. Damon, Finite Determinacy and Topological Triviality I., Invent. Math., 62 (1980), 299-324. II. Sufficient Conditions and Topological Stability, Compositio Math., 47 (1982), 101-132. | Numdam | MR 82f:58018 | Zbl 0489.58003

[5] J. Damon, Classification of Discrete Algebra Types, preprint.

[6] J. Damon, Topological Properties of Real Simple Germs, Curves and the Nice Dimensions n > p, Math. Proc. Camb. Phil. Soc., 89 (1981), 457-472. | MR 82g:58014 | Zbl 0516.58013

[7] J. Damon, Topological Properties of Discrete Algebra Type II : Real and Complex Algebras, Amer. Jour. Math., Vol. 101 No. 6 (1979), 1219-1248. | MR 80k:58020 | Zbl 0498.58005

[8] J. Damon and A. Galligo, On the Hilbert-Samuel Partition for Stable Map-Germs to appear, Bull. Soc. Math. France. | Numdam | Zbl 0547.58001

[9] I. V. Dolgachev, Quotient Conical Singularities on Complex Surfaces, Funct. Anal. and Appl., 9 No. 2 (1975), 160-161. | Zbl 0295.14017

[10] I. V. Dolgachev, Automorphic Forms and Quasihomogeneous Singularities, Funct. Anal. and Appl., 9 No. 2 (1975), 149-150. | MR 58 #27958 | Zbl 0321.14003

[11] M. Giusti, Classification des singularités isolées d'intersections complètes simples, C.R.A.S., Paris, t284 (17 Jan. 1977), 167-169. | MR 55 #12948 | Zbl 0346.32015

[12] G. M. Greuel, Dualität in der lokalen Kohomologie Isolierter Singularitäten, Math. Ann., 250 (1980), 157-173. | MR 82e:32009 | Zbl 0417.14003

[13] G. M. Greuel, Der Gauss-Manin Zusammenhang isolierter Singularitäten von vollständiger Durchschnitten, Math. Ann., 214 (1975), 235-266. | MR 53 #417 | Zbl 0285.14002

[14] G. M. Greuel, Die Zahl der Spitzen und Die Jacobi-Algebra einer isolierten Hyperflächensingularität, Manuscripta Math., 21 (1977), 227-241. | MR 57 #3117 | Zbl 0359.32008

[15] G. M. Greuel, and H. A. Hamm, Invarianten quasihomogener vollständiger Durchschnitte, Invent. Math., 49 (1978), 67-86. | MR 80d:14003 | Zbl 0394.32006

[16] H. Knörrer, Isolierte Singularitäten von Durchschitten Zweier Quadriken, thesis Bonn 1978, Bonner Mathematische Schriften 116.

[17] H. Knörrer, Die Singularitäten vom typ D, Math. Ann., 251 (1980), 135-150. | Zbl 0423.32011

[18] E. Looijenga, Semi-universal Deformation of a Simple Elliptic Hypersurface Singularity I : Unimodularity, Topology, 16 (1977), 257-262. | MR 56 #8565 | Zbl 0373.32004

[19] J. Mather, Stability of C∞-Mappings. III. Finitely Determined Map Germs, Publ. Math. I.H.E.S., 35 (1968), 127-146. IV. Classification of Stable Germs by R-algebras, Publ. Math. I.H.E.S., 37 (1979), 234-248. V. Transversality, Adv. in Math., 4 (1970), 301-336. VI. The Nice Dimensions Liverpool Singularities Symposium I, Springer Lecture Notes, 192 (1970), 207-253. | Zbl 0211.56105

[20] J. Mather, Stratification and Mappings, Dynamical Systems, M. Peixoto Ed., Academic Press (1973), 195-232. | MR 51 #4306 | Zbl 0286.58003

[21] J. Mather, How to Stratify mappings and Jet Spaces, in : Singularités d'Applications Différentiables, Plans sur Bex-1975, Springer Lecture Notes 535, 128-176. | MR 56 #13259 | Zbl 0398.58008

[22] J. Mather and J. Damon, Book on singularities of mappings, in preparation.

[23] H. C. Pinkham, Groupes de monodromie des singularities unimodulaires exceptionnelles, C.R.A.S., Paris, t. 284 (1977), 1515-1518. | MR 55 #12722 | Zbl 0391.14005

[24] F. Ronga, Une Application Topologiquement Stable qui ne peut pas être approchée par une Application Différentiablement Stable, C.R.A.S., Paris, t. 287 (30 Oct. 1978), 779-782. | MR 80f:58014 | Zbl 0397.58009

[25] K. Saito, Einfach-elliptische Singularitäten, Invent, Math., 23 (1974), 289-325. | MR 50 #7147 | Zbl 0296.14019

[26] R. Thom, Ensembles et Morphismes Stratifiés, Bull. Amer. Math. Soc., 75 (1969), 240-284. | MR 39 #970 | Zbl 0197.20502

[27] R. Thom and M. Sebastiani, Un résultat sur la monodromie, Invent. Math., 13 (1971), 90-96. | MR 45 #2201 | Zbl 0233.32025

[28] C. T. C. Wall, First Canonical Stratum, Jour. Lond. Math. Soc., Vol. 21 Pt 3 (1980), 419-433. | MR 81k:58014 | Zbl 0467.58008

[29] K. Wirthmuller, Universell Topologische Triviale Deformationen, Thesis, Univ. of Regensberg.