Soient une -algèbre, un groupe compact abélien, une action de sur la sous-algèbre des points fixes de et la sous-algèbre dense de , des éléments -finis. Soit ensuite un opérateur linéaire de dans qui commute avec et qui est nul sur . Nous prouvons que est une dissipation complète si et seulement si est fermable et sa clôture est le générateur d’un semi-groupe de type de contractions complètement positives. Ces dissipations complètes sont classifiées à l’aide de certaines applications de type négatif tordu du groupe dual dans des opérateurs dissipatifs, affiliés au centre de l’algèbre des multiplicateurs de . Dans ce cadre, il est également établi que les dissipations complètes forment un sous-ensemble propre des dissipations générales, sauf pour le cas où est une -algèbre abélienne.
Let be a -algebra, a compact abelian group, an action of by -automorphisms of the fixed point algebra of and the dense sub-algebra of -finite elements in . Further let be a linear operator from into which commutes with and vanishes on . We prove that is a complete dissipation if and only if is closable and its closure generates a -semigroup of completely positive contractions. These complete dissipations are classified in terms of certain twisted negative definite maps from the dual group into dissipative operators affiliated with the center of the multiplier algebra of . We also argue that the complete dissipation property is strictly stronger than the usual dissipation property, except in special circumstances such as when is abelian.
@article{AIF_1984__34_3_155_0, author = {Bratteli, Ola and Jorgensen, Palle E. T. and Kishimoto, Akitaka and Robinson, Donald W.}, title = {A $C^*$-algebraic Schoenberg theorem}, journal = {Annales de l'Institut Fourier}, volume = {34}, year = {1984}, pages = {155-187}, doi = {10.5802/aif.981}, mrnumber = {86b:46105}, zbl = {0536.46046}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1984__34_3_155_0} }
Bratteli, Ola; Jorgensen, Palle E. T.; Kishimoto, Akitaka; Robinson, Donald W. A $C^*$-algebraic Schoenberg theorem. Annales de l'Institut Fourier, Tome 34 (1984) pp. 155-187. doi : 10.5802/aif.981. http://gdmltest.u-ga.fr/item/AIF_1984__34_3_155_0/
[1] Unbounded negative definite functions, Can J. Math., 33 (1981), 862-871. | MR 83b:43009 | Zbl 0437.22004
and ,[2] Normal positive linear mappings of norm 1 from a von Neumann algebra into its commutant and its application, Pub. RIMS, Kyoto, 8 (1972/1973), 439-469. | MR 47 #7451 | Zbl 0255.46050
,[3] Subalgebras of C*-algebras, Acta Math., 123 (1969), 141-224. | MR 40 #6274 | Zbl 0194.15701
,[4] Potential Theory on Locally Compact Abelian Groups, Springer-Verlag, Berlin-Heidelberg-New York, 1975. | MR 58 #1204 | Zbl 0308.31001
and ,[5] Decomposition of unbounded derivations into invariant and approximately inner parts, Crelle's Journal, 346 (1984), 166-193. | MR 85j:46106 | Zbl 0515.46057
, and ,[6] Dynamical semigroups commuting with compact abelian actions, Ergod. Th. & Dynam. Sys., 3 (1983), 187-217. | MR 85f:46119 | Zbl 0528.46051
and ,[7] Unbounded *-derivations and infinitesimal generators on operator algebra in Proceedings Symp. in Pure Math., Vol. 38 Part 2, 353-365, AMS Providence, R.I. (1982). | MR 84f:46083 | Zbl 0498.46049
and ,[8] Unbounded derivations tangential to compact groups of automorphisms, J. Funct. Anal., 48 (1982), 107-133. | MR 84b:46073 | Zbl 0485.46035
and ,[9] Operator Algebras and Quantum Statistical Mechanics, Vol I, Springer-Verlag, New York, 1979. | MR 81a:46070 | Zbl 0421.46048
and ,[10] Operator Algebras and Quantum Statistical Mechanics, Vol. II Springer-Verlag, New York, 1981. | MR 82k:82013 | Zbl 0463.46052
and ,[11] positive C0-semigroups on C*-algebras, Math. Scand., 49 (1981), 259-274. | MR 83h:46076 | Zbl 0485.46033
and ,[12] Some assorted inequalities for positive linear maps on C*-algebras, J. Operator Theory, 4 (1980), 271-285. | MR 82c:46073 | Zbl 0511.46051
,[13] Cohomology of operator algebras and quantum dynamical semigroups, J. London Math. Soc. (2), 20 (1978), 358-368. | Zbl 0448.46040
and ,[14] Positive linear maps on operator algebras, Commun. Math. Phys., 48 (1976), 15-22. | MR 54 #8298 | Zbl 0337.46050
,[15] The generators of positive semigroups, J. Funct. Anal., 32 (1979), 207-212. | MR 80h:47049 | Zbl 0428.46042
and ,[16] The theory of matrices, Vol. 1, Chelsea Publishing Co., New York, 1959. | Zbl 0085.01001
,[17] Dissipations and derivations, Commun. Math. Phys., 47 (1976), 25-32. | MR 53 #6335 | Zbl 0318.46071
,[18] On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48 (1976), 119-130. | MR 54 #1990 | Zbl 0343.47031
,[19] Normed Algebras, Walters-Noordhoff, Groningen, 1972.
,[20] Ergodic actions of compact abelian groups, J. Operator Theory, 3 (1980), 237-269. | MR 83j:46078 | Zbl 0456.46053
, and ,[21] Positive definite kernels, continuous tensor products, and central limit theorems of probability theory, SLN 272, Springer-Verlag, Berlin, 1972. | MR 58 #29849 | Zbl 0237.43005
and ,[22] C*-algebras and their Automorphism Groups, Academic Press, London, 1979. | MR 81e:46037 | Zbl 0416.46043
,[23] Strongly positive semigroups and faithful invariant states, Commun. Math. Phys., 85 (1982), 129-142. | MR 83k:46057 | Zbl 0532.46040
,[24] Developments in the theory of unbounded derivations in C*-algebras, in Operator Algebras and Applications, Proceedings of Symp. Pure Math, Vol. 38 Part 1, 309-311. AMS, Providence R.I. (1980). | MR 84g:46102 | Zbl 0533.46038
,[25] Metric spaces and positive definite functions, Trans. Amer Math. Soc., 44 (1938), 522-536. | JFM 64.0617.02 | MR 1501980 | Zbl 0019.41502
,[26] Bemerkungen zur Theorie der beschränkten bilinearformen mit unendlich vielen Veränderlichen, J. für die reine u.ang. Math., 140 (1911), 1-28. | JFM 42.0367.01
,[27] A non-commutative version of abstract integration, Ann. Math., 57 (1953), 401-457. | MR 14,991f | Zbl 0051.34201
,[28] On factor representations and the C*algebra of the canonical commutation relations, Commun. Math. Phys., 24 (1971), 151-170. | MR 45 #3017 | Zbl 0225.46068
,[29] Positive function on C*algebras, Proc. Amer. Math. Soc., 6 (1955), 211-216. | MR 16,1033b | Zbl 0064.36703
,[30] On unbounded operators in Hilbert space, J. Indian Math. Soc., 15 (1951), 155-192. | MR 14,565d | Zbl 0047.11102
,[31] Positive linear maps on C*-algebras, Can. J. Math., 24 (1972), 520-529. | MR 47 #4009 | Zbl 0235.46090
,[32] L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1940. | JFM 66.1205.02 | MR 3,198b | Zbl 0063.08195
,