A C * -algebraic Schoenberg theorem
Bratteli, Ola ; Jorgensen, Palle E. T. ; Kishimoto, Akitaka ; Robinson, Donald W.
Annales de l'Institut Fourier, Tome 34 (1984), p. 155-187 / Harvested from Numdam

Soient 𝔄 une C * -algèbre, G un groupe compact abélien, τ une action de G sur 𝔄,𝔄 τ la sous-algèbre des points fixes de τ et 𝔄 F la sous-algèbre dense de 𝔄, des éléments G-finis. Soit ensuite H un opérateur linéaire de 𝔄 F dans 𝔄 qui commute avec τ et qui est nul sur 𝔄 τ . Nous prouvons que H est une dissipation complète si et seulement si H est fermable et sa clôture est le générateur d’un semi-groupe de type C 0 de contractions complètement positives. Ces dissipations complètes sont classifiées à l’aide de certaines applications de type négatif tordu du groupe dual G ^ dans des opérateurs dissipatifs, affiliés au centre de l’algèbre des multiplicateurs de 𝔄 τ . Dans ce cadre, il est également établi que les dissipations complètes forment un sous-ensemble propre des dissipations générales, sauf pour le cas où 𝔄 est une C * -algèbre abélienne.

Let 𝔄 be a C * -algebra, G a compact abelian group, τ an action of G by *-automorphisms of 𝔄,𝔄 τ the fixed point algebra of τ and 𝔄 F the dense sub-algebra of G-finite elements in 𝔄. Further let H be a linear operator from 𝔄 F into 𝔄 which commutes with τ and vanishes on 𝔄 τ . We prove that H is a complete dissipation if and only if H is closable and its closure generates a C 0 -semigroup of completely positive contractions. These complete dissipations are classified in terms of certain twisted negative definite maps from the dual group G ^ into dissipative operators affiliated with the center of the multiplier algebra of 𝔄 τ . We also argue that the complete dissipation property is strictly stronger than the usual dissipation property, except in special circumstances such as when 𝔄 is abelian.

@article{AIF_1984__34_3_155_0,
     author = {Bratteli, Ola and Jorgensen, Palle E. T. and Kishimoto, Akitaka and Robinson, Donald W.},
     title = {A $C^*$-algebraic Schoenberg theorem},
     journal = {Annales de l'Institut Fourier},
     volume = {34},
     year = {1984},
     pages = {155-187},
     doi = {10.5802/aif.981},
     mrnumber = {86b:46105},
     zbl = {0536.46046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1984__34_3_155_0}
}
Bratteli, Ola; Jorgensen, Palle E. T.; Kishimoto, Akitaka; Robinson, Donald W. A $C^*$-algebraic Schoenberg theorem. Annales de l'Institut Fourier, Tome 34 (1984) pp. 155-187. doi : 10.5802/aif.981. http://gdmltest.u-ga.fr/item/AIF_1984__34_3_155_0/

[1] C.A. Akemann and M.E. Walter, Unbounded negative definite functions, Can J. Math., 33 (1981), 862-871. | MR 83b:43009 | Zbl 0437.22004

[2] H. Araki, Normal positive linear mappings of norm 1 from a von Neumann algebra into its commutant and its application, Pub. RIMS, Kyoto, 8 (1972/1973), 439-469. | MR 47 #7451 | Zbl 0255.46050

[3] W.B. Arveson, Subalgebras of C*-algebras, Acta Math., 123 (1969), 141-224. | MR 40 #6274 | Zbl 0194.15701

[4] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer-Verlag, Berlin-Heidelberg-New York, 1975. | MR 58 #1204 | Zbl 0308.31001

[5] O. Bratteli, G.A. Elliot and P.E.T. Jørgensen, Decomposition of unbounded derivations into invariant and approximately inner parts, Crelle's Journal, 346 (1984), 166-193. | MR 85j:46106 | Zbl 0515.46057

[6] O. Bratteli and D.E. Evans, Dynamical semigroups commuting with compact abelian actions, Ergod. Th. & Dynam. Sys., 3 (1983), 187-217. | MR 85f:46119 | Zbl 0528.46051

[7] O. Bratteli and P.E.T. Jørgensen, Unbounded *-derivations and infinitesimal generators on operator algebra in Proceedings Symp. in Pure Math., Vol. 38 Part 2, 353-365, AMS Providence, R.I. (1982). | MR 84f:46083 | Zbl 0498.46049

[8] O. Bratteli and P.E.T. Jørgensen, Unbounded derivations tangential to compact groups of automorphisms, J. Funct. Anal., 48 (1982), 107-133. | MR 84b:46073 | Zbl 0485.46035

[9] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol I, Springer-Verlag, New York, 1979. | MR 81a:46070 | Zbl 0421.46048

[10] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. II Springer-Verlag, New York, 1981. | MR 82k:82013 | Zbl 0463.46052

[11] O. Bratteli and D.W. Robinson, positive C0-semigroups on C*-algebras, Math. Scand., 49 (1981), 259-274. | MR 83h:46076 | Zbl 0485.46033

[12] M.-D Choi, Some assorted inequalities for positive linear maps on C*-algebras, J. Operator Theory, 4 (1980), 271-285. | MR 82c:46073 | Zbl 0511.46051

[13] E. Christensen and D.E. Evans, Cohomology of operator algebras and quantum dynamical semigroups, J. London Math. Soc. (2), 20 (1978), 358-368. | Zbl 0448.46040

[14] D.E. Evans, Positive linear maps on operator algebras, Commun. Math. Phys., 48 (1976), 15-22. | MR 54 #8298 | Zbl 0337.46050

[15] D.E. Evans and H. Hanche-Olsen, The generators of positive semigroups, J. Funct. Anal., 32 (1979), 207-212. | MR 80h:47049 | Zbl 0428.46042

[16] F.R. Gantmacher, The theory of matrices, Vol. 1, Chelsea Publishing Co., New York, 1959. | Zbl 0085.01001

[17] A. Kishimoto, Dissipations and derivations, Commun. Math. Phys., 47 (1976), 25-32. | MR 53 #6335 | Zbl 0318.46071

[18] G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48 (1976), 119-130. | MR 54 #1990 | Zbl 0343.47031

[19] M.A. Naimark, Normed Algebras, Walters-Noordhoff, Groningen, 1972.

[20] D. Olsen, G.K. Pedersen and M. Takesaki, Ergodic actions of compact abelian groups, J. Operator Theory, 3 (1980), 237-269. | MR 83j:46078 | Zbl 0456.46053

[21] K. Parthasarathy and K. Schmidt, Positive definite kernels, continuous tensor products, and central limit theorems of probability theory, SLN 272, Springer-Verlag, Berlin, 1972. | MR 58 #29849 | Zbl 0237.43005

[22] G.K. Pedersen, C*-algebras and their Automorphism Groups, Academic Press, London, 1979. | MR 81e:46037 | Zbl 0416.46043

[23] D.W. Robinson, Strongly positive semigroups and faithful invariant states, Commun. Math. Phys., 85 (1982), 129-142. | MR 83k:46057 | Zbl 0532.46040

[24] S. Sakai, Developments in the theory of unbounded derivations in C*-algebras, in Operator Algebras and Applications, Proceedings of Symp. Pure Math, Vol. 38 Part 1, 309-311. AMS, Providence R.I. (1980). | MR 84g:46102 | Zbl 0533.46038

[25] I.J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer Math. Soc., 44 (1938), 522-536. | JFM 64.0617.02 | MR 1501980 | Zbl 0019.41502

[26] I. Schur, Bemerkungen zur Theorie der beschränkten bilinearformen mit unendlich vielen Veränderlichen, J. für die reine u.ang. Math., 140 (1911), 1-28. | JFM 42.0367.01

[27] I.E. Segal, A non-commutative version of abstract integration, Ann. Math., 57 (1953), 401-457. | MR 14,991f | Zbl 0051.34201

[28] J. Slawny, On factor representations and the C*algebra of the canonical commutation relations, Commun. Math. Phys., 24 (1971), 151-170. | MR 45 #3017 | Zbl 0225.46068

[29] W.F. Stinespring, Positive function on C*algebras, Proc. Amer. Math. Soc., 6 (1955), 211-216. | MR 16,1033b | Zbl 0064.36703

[30] M.H. Stone, On unbounded operators in Hilbert space, J. Indian Math. Soc., 15 (1951), 155-192. | MR 14,565d | Zbl 0047.11102

[31] M.D. Choi, Positive linear maps on C*-algebras, Can. J. Math., 24 (1972), 520-529. | MR 47 #4009 | Zbl 0235.46090

[32] A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1940. | JFM 66.1205.02 | MR 3,198b | Zbl 0063.08195