On donne une nouvelle démonstration d’un théorème de W.H.J. Fuchs du type Phragmén Lindelöf pour les ouverts quelconques du plan ouvert : soit holomorphe dans et bornée aux environs de la frontière de croissante ou plus comme un polynôme; alors ou est bornée ou a un pôle simple à l’infini.
We give a new proof of a Phragmén Lindelöf theorem due to W.H.J. Fuchs and valid for an arbitrary open subset of the complex plane: if is analytic on , bounded near the boundary of , and the growth of is at most polynomial then either is bounded or for some positive and has a simple pole.
@article{AIF_1984__34_2_63_0, author = {Lyons, Terry J.}, title = {An application of fine potential theory to prove a Phragmen Lindel\"of theorem}, journal = {Annales de l'Institut Fourier}, volume = {34}, year = {1984}, pages = {63-66}, doi = {10.5802/aif.964}, mrnumber = {86c:30042}, zbl = {0522.30024}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1984__34_2_63_0} }
Lyons, Terry J. An application of fine potential theory to prove a Phragmen Lindelöf theorem. Annales de l'Institut Fourier, Tome 34 (1984) pp. 63-66. doi : 10.5802/aif.964. http://gdmltest.u-ga.fr/item/AIF_1984__34_2_63_0/
[1]Conditional Brownian motion and the boundary limits of harmonic function, Bull. Soc. Math. France, 85 (1957). | Numdam | MR 22 #844 | Zbl 0097.34004
,[2]A Phragmen Lindelöf theorem conjectured by D. J. Newman, T.A.M.S., 257 (1981), 285-293. | MR 82g:30041 | Zbl 0472.30025
,[3]Sur les fonctions finement holomorphes, Ann. Inst. Fourier, Grenoble, 31-4 (1981), 57-88. | Numdam | MR 83e:31003 | Zbl 0445.30040
,[4]Analytic functions satisfying a Hölder condition on the boundary, Journal of Approximation Theory, 35 (1982), 243-249. | MR 83i:30035 | Zbl 0487.41009
, and ,[5]A new criterion for Dirichlet regularity via quasi-boundedness of the fundamental superharmonic function, J.L.M.S., 19 (1979), 301-311. | MR 81a:31003 | Zbl 0404.31003
,[6]Finely Holomorphic Functions, and A Theorem in Fine Potential Theory and Applications to Finely Holomorphic Functions, Journ. Functional Analysis, 37 (1980), 1-18 and 19-26. | MR 82d:31011a | Zbl 0459.46038
,[7]Processus de Markov : la frontière de Martin, Springer Lecture Notes in Mathematics No 77 (1968). | MR 39 #7669 | Zbl 0174.49303
,