Completely continuous multipliers from L 1 (G) into L (G)
Crombez, G. ; Govaerts, Willy
Annales de l'Institut Fourier, Tome 34 (1984), p. 137-154 / Harvested from Numdam

Étant donné un groupe G localement compact et séparé, nous étudions les fonctions g de L (G) qui induisent des convoluteurs T g complètement continus de L 1 (G) dans L (G). Dans le cas d’un groupe métrisable nous obtenons une description complète de ces fonctions.

For a locally compact Hausdorff group G we investigate what functions in L (G) give rise to completely continuous multipliers T g from L 1 (G) into L (G). In the case of a metrizable group we obtain a complete description of such functions. In particular, for G compact all g in L (G) induce completely continuous T g .

@article{AIF_1984__34_2_137_0,
     author = {Crombez, G. and Govaerts, Willy},
     title = {Completely continuous multipliers from $L\_1(G)$ into $L\_\infty (G)$},
     journal = {Annales de l'Institut Fourier},
     volume = {34},
     year = {1984},
     pages = {137-154},
     doi = {10.5802/aif.968},
     mrnumber = {86b:43003},
     zbl = {0518.42009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1984__34_2_137_0}
}
Crombez, G.; Govaerts, Willy. Completely continuous multipliers from $L_1(G)$ into $L_\infty (G)$. Annales de l'Institut Fourier, Tome 34 (1984) pp. 137-154. doi : 10.5802/aif.968. http://gdmltest.u-ga.fr/item/AIF_1984__34_2_137_0/

[1] G. Crombez and W. Govaerts, Weakly compact convolution operators in L1(G), Simon Stevin, 52 (1978), 65-72. | MR 80a:43008 | Zbl 0379.43004

[2] G. Crombez and W. Govaerts, Towards a classification of convolution-type operators from l1 to l∞, Canad. Math. Bull., 23 (1980), 413-419. | MR 82f:47038 | Zbl 0446.47017

[3] J. Diestel and J. J. Uhl, Vector measures, Math. Surveys n° 15, Amer. Math. Soc., Providence, R.I., 1977. | MR 56 #12216 | Zbl 0369.46039

[4] N. Dunford and J. T. Schwartz, Linear operators, part I, New-York, Interscience, 1958. | MR 22 #8302 | Zbl 0084.10402

[5] R. E. Edwards, Functional analysis, New-York, Holt, Rinehart and Winston, 1965. | MR 36 #4308 | Zbl 0182.16101

[6] R. Herman, Generalizations of weakly compact operators, Trans. Amer. Math. Soc., 132 (1968), 377-386. | MR 36 #6976 | Zbl 0159.43004

[7] E. Hewitt and K. A. Ross, Abstract harmonic analysis, I, Berlin, Springer, 1963.

[8] A. Pelczynski, On strictly singular and strictly cosingular operators, II, Bull. Acad. Polon. Sci., Sér. Sc. Math. Astronom. Phys., 13 (1965), 37-41. | MR 31 #1564 | Zbl 0138.38604

[9] A. Pietsch, Operator ideals, Amsterdam, North-Holland Publ. Comp., 1980. | MR 81j:47001 | Zbl 0434.47030

[10] K. Ylinen, Characterizations of B(G) and B(G)∩AP(G) for locally compact groups, Proc. Amer. Math. Soc., 58 (1976), 151-157. | MR 54 #13472 | Zbl 0333.43004