On étudie un processus d’approximation des représentations du groupe par celles du groupe . Comme conséquence on établit une version d’un théorème de DeLeeuw pour les multiplicateurs de Fourier de relatif aux “restrictions” d’une fonction sur le dual de au dual de .
We study a method of approximating representations of the group by those of the group . As a consequence we establish a version of a theorem of DeLeeuw for Fourier multipliers of that applies to the “restrictions” of a function on the dual of to the dual of .
@article{AIF_1984__34_2_111_0, author = {Dooley, Anthony H. and Gaudry, Garth I.}, title = {An extension of deLeeuw's theorem to the $n$-dimensional rotation group}, journal = {Annales de l'Institut Fourier}, volume = {34}, year = {1984}, pages = {111-135}, doi = {10.5802/aif.967}, mrnumber = {86a:43002}, zbl = {0523.43002}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1984__34_2_111_0} }
Dooley, Anthony H.; Gaudry, Garth I. An extension of deLeeuw’s theorem to the $n$-dimensional rotation group. Annales de l'Institut Fourier, Tome 34 (1984) pp. 111-135. doi : 10.5802/aif.967. http://gdmltest.u-ga.fr/item/AIF_1984__34_2_111_0/
[1] Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier, Grenoble, 24, 1 (1974), 149-172. | Numdam | MR 50 #14065 | Zbl 0273.22011
,[2] Contractions of rotation groups and their representations. To appear, Math. Proc. Camb. Phil. Soc. | Zbl 0532.22014
and ,[3] Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
and ,[4] Abstract harmonic analysis, Vol. II, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1970.
and ,[5] Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. | MR 48 #2197 | Zbl 0254.17004
,[6] The Plancherel formula for group extensions, Ann. Sci. Ecole Norm. Sup., 5 (1972), 459-516. | Numdam | MR 49 #7387 | Zbl 0239.43003
and ,[7] On Lp multipliers, Ann. of Math., (2), 81 (1965), 364-379. | MR 30 #5127 | Zbl 0171.11803
,[8] Harmonic analysis on the group of rigid motions of the Euclidean plane, Studia Math., LXII (1978), 125-141. | MR 58 #2030 | Zbl 0394.43008
,[9] Algèbres de Lie semi-simples complexes, W. A. Benjamin, Inc., New York, 1966. | MR 35 #6721 | Zbl 0144.02105
,