Nous considérons des groupes de différomorphismes de la demi-droite fermée qui ne fixe qu’un point. Un tel groupe, s’il est un groupe de Lie, est isomorphe à un sous-groupe du groupe affine. D’autre part, un tel groupe, s’il est isomorphe à un sous-groupe discret d’un groupe de Lie résoluble, est topologiquement équivalent à un sous-groupe du groupe affine.
We consider groups of diffeomorphisms of the closed half-line which fix only the end point. When the group is a Lie group it is isomorphic to a subgroup of the affine group. On the other hand, when the group is isomorphic to a discrete subgroup of a solvable Lie group it is topologically equivalent to a subgroup of the affine group.
@article{AIF_1984__34_1_47_0, author = {Plante, Joseph F.}, title = {Subgroups of continuous groups acting differentiably on the half-line}, journal = {Annales de l'Institut Fourier}, volume = {34}, year = {1984}, pages = {47-56}, doi = {10.5802/aif.950}, mrnumber = {86j:58020}, zbl = {0519.57037}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1984__34_1_47_0} }
Plante, Joseph F. Subgroups of continuous groups acting differentiably on the half-line. Annales de l'Institut Fourier, Tome 34 (1984) pp. 47-56. doi : 10.5802/aif.950. http://gdmltest.u-ga.fr/item/AIF_1984__34_1_47_0/
[1] Continuous groups, Chelsea, New York (1966).
,[2] Sur les feuilletages induits par l'action de groupes de Lie nilpotents, Ann. Inst. Fourier, 27-2 (1977), 161-190. | Numdam | MR 57 #17662 | Zbl 0349.57009
,[3] Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., (9) 11 (1932), 333-375. | JFM 58.1124.04
,[4] On manifolds foliated by nilpotent Lie group actions, preprint Lille (1980).
,[5] Commuting diffeomorphisms, Proc. Symposia Pure Math., v. 14, A.M.S., (1969), 165-184. | MR 42 #5285 | Zbl 0225.57020
,[6] On fundamental groups of complete affinely flat manifolds, Adv. Math., 25 (1977), 178-187. | MR 56 #13130 | Zbl 0364.55001
,[7] Foliations with measure preserving holonomy, Ann. Math., 102 (1975), 327-361. | MR 52 #11947 | Zbl 0314.57018
,[8] Solvable groups acting on this line, Trans. A.M.S., 278 (1983), 401-414. | MR 85b:57048 | Zbl 0569.57012
,[9] Polynomial growth in holonomy groups of foliations, Comm. Math. Helv., 39 (51) (1976), 567-584. | MR 55 #9117 | Zbl 0348.57009
, ,[10] A generalization of the Reeb Stability Theorem, Topology, 13 (1974), 347-352. | MR 50 #8558 | Zbl 0305.57025
,[11] Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Diff. Geom., 2 (1968), 421-446. | MR 40 #1939 | Zbl 0207.51803
,