On the closure of spaces of sums of ridge functions and the range of the X-ray transform
Boman, Jan
Annales de l'Institut Fourier, Tome 34 (1984), p. 207-239 / Harvested from Numdam

Soient aR n {0} et Ω un ouvert borné de R n . Soit L p (Ω,a) le sous-espace fermé de L p (Ω) formé des fonctions constantes presque partout sur presque toutes les lignes parallèles à a. Pour un ensemble donné de directions a ν R n {0}, ν=1,...,m, on veut déterminer les Ω pour lesquels

(*)Lp(Ω,a1)++Lp(Ω,am)estunsous-espacefermédeLp(Ω).

On rencontre ce problème dans l’étude des reconstructions des images à partir des projections (tomographie). C’est un problème essentiellement équivalent que de décider si un certain opérateur à valeurs matricielles a son image fermée. Si ΩR 2 , 1p<, et si la frontière de Ω est une courbe lipschitzienne (cette dernière condition peut être affaiblie), alors (*) est valable. Pour ΩR n , n3, la situation est différente : (*) n’est pas nécessairement vrai même si Ω est convexe ayant une frontière lisse. Or (*) est valable si ΩR 3 est convexe et si en outre les courbures principales de la frontière sont non-nulles en un nombre fini de points déterminés par les a ν .

For aR n {0} and Ω an open bounded subset of R n definie L p (Ω,a) as the closed subset of L p (Ω) consisting of all functions that are constant almost everywhere on almost all lines parallel to a. For a given set of directions a ν R n {0}, ν=1,...,m, we study for which Ω it is true that the vector space

(*)Lp(Ω,a1)++Lp(Ω,am)isaclosedsubspaceofLp(Ω).

This problem arizes naturally in the study of image reconstruction from projections (tomography). An essentially equivalent problem is to decide whether a certain matrix-valued differential operator has closed range. If ΩR 2 , the boundary of Ω is a Lipschitz curve (this condition can be relaxes), and 1p<, then (*) holds. For ΩR n , n3, the situation is different: (*) is not necessarily true even if Ω is convex and has smooth boundary. On the other hand we prove that (*) holds if ΩR 3 is convex and the boundary has non-vanishing principal curvatures at a certain finite set of points, which is determined by the set of directions a ν .

@article{AIF_1984__34_1_207_0,
     author = {Boman, Jan},
     title = {On the closure of spaces of sums of ridge functions and the range of the $X$-ray transform},
     journal = {Annales de l'Institut Fourier},
     volume = {34},
     year = {1984},
     pages = {207-239},
     doi = {10.5802/aif.957},
     mrnumber = {85j:44002},
     zbl = {0521.46018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1984__34_1_207_0}
}
Boman, Jan. On the closure of spaces of sums of ridge functions and the range of the $X$-ray transform. Annales de l'Institut Fourier, Tome 34 (1984) pp. 207-239. doi : 10.5802/aif.957. http://gdmltest.u-ga.fr/item/AIF_1984__34_1_207_0/

[1] J. Dieudonne, L. Schwartz, La dualité dans les espaces (F) et (LF), Ann. Inst. Fourier, 1 (1949), 61-101. | Numdam | MR 12,417d | Zbl 0035.35501

[2] K.J. Falconer, Consistency conditions for a finite set of projections of a function, Math. Proc. Cambridge Philos. Soc., 85 (1979), 61-68. | MR 80e:28010 | Zbl 0386.28008

[3] C. Hamaker, D.C. Solmon, The angles between the null spaces of X-rays, J Math. Anal. Appl., 62 (1978), 1-23. | MR 57 #3798 | Zbl 0437.45025

[4] L. Hormander, Linear partial differential operators, Springer-Verlag, Berlin, 1963. | MR 28 #4221 | Zbl 0108.09301

[5] J.L. Kelley, I. Namioka, Linear topological spaces, Van Nostrand, 1963. | MR 29 #3851 | Zbl 0115.09902

[6] B.F. Logan, L.A. Shepp, Optimal reconstruction of a function from its projections, Duke Math. J., 42 (1975), 645-659. 659. | MR 53 #1099 | Zbl 0343.41020

[7] B.E. Petersen, K.T. Smith, D.C. Solmon, Sums of plane waves and the range of the Radon transform, Math. Ann., 243 (1979), 153-161. | MR 83d:44002 | Zbl 0424.35005

[8] L.A. Shepp, J.B. Kruskal, Computerized tomography: the new medical X-ray technology, Amer. Math. Monthly, 85 (1978), 420-438. | Zbl 0381.68079

[9] K.T. Smith, D.C. Solmon, S.L. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. A.M.S., 83 (1977), 1227-1270. | MR 58 #9394a | Zbl 0521.65090

[10] L. Svensson, When is the sum of closed subspaces closed? An example arising in computerized tomography, Research Report, Royal Inst. Technology (Stockholm), 1980.

[11] J.V. Leahy, K.T. Smith, D.C. Solmon, Uniqueness, nonuniqueness and inversion in the X-ray and Radon problems, to appear in Proc. Internat. Symp. on III-posed Problems, Univ. of Delaware, Newark, Delaware, 1979.