Soient et un ouvert borné de . Soit le sous-espace fermé de formé des fonctions constantes presque partout sur presque toutes les lignes parallèles à . Pour un ensemble donné de directions , , on veut déterminer les pour lesquels
On rencontre ce problème dans l’étude des reconstructions des images à partir des projections (tomographie). C’est un problème essentiellement équivalent que de décider si un certain opérateur à valeurs matricielles a son image fermée. Si , , et si la frontière de est une courbe lipschitzienne (cette dernière condition peut être affaiblie), alors est valable. Pour , , la situation est différente : n’est pas nécessairement vrai même si est convexe ayant une frontière lisse. Or est valable si est convexe et si en outre les courbures principales de la frontière sont non-nulles en un nombre fini de points déterminés par les .
For and an open bounded subset of definie as the closed subset of consisting of all functions that are constant almost everywhere on almost all lines parallel to . For a given set of directions , , we study for which it is true that the vector space
This problem arizes naturally in the study of image reconstruction from projections (tomography). An essentially equivalent problem is to decide whether a certain matrix-valued differential operator has closed range. If , the boundary of is a Lipschitz curve (this condition can be relaxes), and , then holds. For , , the situation is different: is not necessarily true even if is convex and has smooth boundary. On the other hand we prove that holds if is convex and the boundary has non-vanishing principal curvatures at a certain finite set of points, which is determined by the set of directions .
@article{AIF_1984__34_1_207_0, author = {Boman, Jan}, title = {On the closure of spaces of sums of ridge functions and the range of the $X$-ray transform}, journal = {Annales de l'Institut Fourier}, volume = {34}, year = {1984}, pages = {207-239}, doi = {10.5802/aif.957}, mrnumber = {85j:44002}, zbl = {0521.46018}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1984__34_1_207_0} }
Boman, Jan. On the closure of spaces of sums of ridge functions and the range of the $X$-ray transform. Annales de l'Institut Fourier, Tome 34 (1984) pp. 207-239. doi : 10.5802/aif.957. http://gdmltest.u-ga.fr/item/AIF_1984__34_1_207_0/
[1] La dualité dans les espaces (F) et (LF), Ann. Inst. Fourier, 1 (1949), 61-101. | Numdam | MR 12,417d | Zbl 0035.35501
, ,[2] Consistency conditions for a finite set of projections of a function, Math. Proc. Cambridge Philos. Soc., 85 (1979), 61-68. | MR 80e:28010 | Zbl 0386.28008
,[3] The angles between the null spaces of X-rays, J Math. Anal. Appl., 62 (1978), 1-23. | MR 57 #3798 | Zbl 0437.45025
, ,[4] Linear partial differential operators, Springer-Verlag, Berlin, 1963. | MR 28 #4221 | Zbl 0108.09301
,[5] Linear topological spaces, Van Nostrand, 1963. | MR 29 #3851 | Zbl 0115.09902
, ,[6] Optimal reconstruction of a function from its projections, Duke Math. J., 42 (1975), 645-659. 659. | MR 53 #1099 | Zbl 0343.41020
, ,[7] Sums of plane waves and the range of the Radon transform, Math. Ann., 243 (1979), 153-161. | MR 83d:44002 | Zbl 0424.35005
, , ,[8] Computerized tomography: the new medical X-ray technology, Amer. Math. Monthly, 85 (1978), 420-438. | Zbl 0381.68079
, ,[9] Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. A.M.S., 83 (1977), 1227-1270. | MR 58 #9394a | Zbl 0521.65090
, , ,[10] When is the sum of closed subspaces closed? An example arising in computerized tomography, Research Report, Royal Inst. Technology (Stockholm), 1980.
,[11] Uniqueness, nonuniqueness and inversion in the X-ray and Radon problems, to appear in Proc. Internat. Symp. on III-posed Problems, Univ. of Delaware, Newark, Delaware, 1979.
, , ,