On dit qu’une fonction entière a des lacunes de Fejér si Le résultat principal de cet article est le suivant : Une fonction entière avec des lacunes de Fejér n’a pas de valeur déficiente finie.
We say that an entire function has Fejér gaps if The main result of this paper is as follows: An entire function with Fejér gaps has no finite deficient value.
@article{AIF_1983__33_3_39_0, author = {Murai, Takafumi}, title = {The deficiency of entire functions with Fej\'er gaps}, journal = {Annales de l'Institut Fourier}, volume = {33}, year = {1983}, pages = {39-58}, doi = {10.5802/aif.930}, mrnumber = {84m:30046}, zbl = {0489.30028}, mrnumber = {723947}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1983__33_3_39_0} }
Murai, Takafumi. The deficiency of entire functions with Fejér gaps. Annales de l'Institut Fourier, Tome 33 (1983) pp. 39-58. doi : 10.5802/aif.930. http://gdmltest.u-ga.fr/item/AIF_1983__33_3_39_0/
[1] Sur les équations algébriques contenant des paramètres arbitraires, Bull. Int. Acad. Polon. Sci. Lett., Sér. A (III) (1927), 542-685. | JFM 56.0863.02
,[2] Sur les fonctions entières à séries lacunaires, C.R.A.S., Paris, Sér. A-B, 187 (1928), 477-479. | JFM 54.0349.02
,[3] On integral functions with exceptional values, J. London Math. Soc., 42 (1967), 393-400. | MR 215993 | MR 35 #6828 | Zbl 0164.08701
,[4] Über die Wurzel vom kleinsten absoluten Betrage einer algebraischen Gleichung, Math. Annalen, (1908), 413-423. | JFM 39.0123.02 | MR 1511474
,[5] Proof of a conjecture of G. Pólya concerning gap series, Illinois J. Math., 7 (1963), 661-667. | MR 159933 | MR 28 #3149 | Zbl 0113.28702
,[6] Nevanlinna theory and gap series, Symposia on theoretical physics and mathematics, V.9, Plenum Press, New York, 1969. | MR 252644 | MR 40 #5863 | Zbl 0179.11001
,[7] Meromorphic functions, Oxford, 1964. | MR 164038 | MR 29 #1337 | Zbl 0115.06203
,[8] Angular value distribution of power series with gaps, Proc. London Math. Soc., (3), 24 (1972), 590-624. | MR 306497 | MR 46 #5623 | Zbl 0239.30035
,[9] On the Borel exceptional values of lacunary integral functions, J. Analyse Math., 9 (1961/1962), 71-109. | MR 25 #3174 | Zbl 0101.05302
,[10] A gap-theorem for entire functions of infinite order, Michigan Math. J., 12 (1965), 133-140. | MR 31 #351 | Zbl 0152.06604
,[11] The deficiency of gap series, Analysis (1983) to appear. | Zbl 0533.30028
,[12] Growth of meromorphic functions of finite lower order, Izv. Akad. Nauk SSSR, Ser. Mat., 33 (1969), 414-454. | Zbl 0194.11101
,[13] Lücken und Singularitäten von Porenzreihen, Math. Z., 29 (1929), 549-640. | JFM 55.0186.02
,[14] An analogue of a theorem of W.H.J. Fuchs on gap series, Proc. London Math. Soc., (3), 21 (1970), 525-539. | MR 44 #6962 | Zbl 0206.08801
,[15] Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Function und dem grössten Gliede der zugehörigen Taylorschen Reihe, Acta Math., 37 (1914), 305-326. | JFM 45.0641.02
,[16] Trigonometric series I, Cambridge, 1959. | Zbl 0085.05601
,