Soit la -algèbre, ou bien réduite ou bien maximale, associée à la variété feuilletée , et la -algèbre élémentaire des opérateurs compacts. Alors, si dim, on montre que est isomorphe à .
Let be either the reduced or the maximal -algebra associated to a foliated manifold , and let be the elementary -algebra of compact operators. Then, it dim, it is shown that is isomorphic to the tensor product .
@article{AIF_1983__33_3_201_0, author = {Hilsum, Michel and Skandalis, Georges}, title = {Stabilit\'e des $C^*$-alg\`ebres de feuilletages}, journal = {Annales de l'Institut Fourier}, volume = {33}, year = {1983}, pages = {201-208}, doi = {10.5802/aif.936}, mrnumber = {85f:58115}, zbl = {0505.46043}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1983__33_3_201_0} }
Hilsum, Michel; Skandalis, Georges. Stabilité des $C^*$-algèbres de feuilletages. Annales de l'Institut Fourier, Tome 33 (1983) pp. 201-208. doi : 10.5802/aif.936. http://gdmltest.u-ga.fr/item/AIF_1983__33_3_201_0/
[1] Sur la théorie non commutative de l'intégration, Lect. Notes in Math., n° 725, Springer (1979), 19 à 143. | MR 81g:46090 | Zbl 0412.46053
,[2] Survey of foliations and operator algebras, Operator algebras and applications, Proc. of Symp. in Pure Math., vol 38, part 1, A.M.S., Providence 1982. | Zbl 0531.57023
,[3] The longitudinal index theorem for foliations, Preprint I.H.E.S./M/82/24. | Zbl 0575.58030
, ,[4] Hilbert C*-modules, Theorems of Stinespring and Voiculescu, Journal of Operator Theory, vol. 4 n° 1 (1980). | MR 82b:46074 | Zbl 0456.46059
,[5] Foliations with measure preserving holonomy, Ann. of Math., 102 (1975). | MR 52 #11947 | Zbl 0314.57018
,[6] A groupoid approach to C*-algebras, Lect. Notes in Math., n° 793, Springer (1980). | MR 82h:46075 | Zbl 0433.46049
,[7] Morita equivalence for C* and W* algebras, Journal of Pure and Applied Algebra, 5 (1974). | MR 51 #3912 | Zbl 0295.46099
,