Un sous-faisceau du faisceau des germes de fonctions sur un ouvert de est appelé un faisceau de sous-anneaux s’il est fermé pour l’opération définie par la composition avec toute fonction . En comparant avec les investigations de faisceaux d’idéaux de , on étudie la présentabilité finie de certains faisceaux de sous-anneaux . En particulier, on traite le faisceau défini par la distribution de -classes de Mather d’une application .
A subsheaf of the sheaf of germs functions over an open subset of is called a sheaf of sub function. Comparing with the investigations of sheaves of ideals of , we study the finite presentability of certain sheaves of sub -rings. Especially we treat the sheaf defined by the distribution of Mather’s -classes of a mapping.
@article{AIF_1983__33_2_199_0, author = {Ishikawa, Goo}, title = {Families of functions dominated by distributions of $C$-classes of mappings}, journal = {Annales de l'Institut Fourier}, volume = {33}, year = {1983}, pages = {199-217}, doi = {10.5802/aif.924}, mrnumber = {84g:58014}, zbl = {0488.58004}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1983__33_2_199_0} }
Ishikawa, Goo. Families of functions dominated by distributions of $C$-classes of mappings. Annales de l'Institut Fourier, Tome 33 (1983) pp. 199-217. doi : 10.5802/aif.924. http://gdmltest.u-ga.fr/item/AIF_1983__33_2_199_0/
[1] C∞ schemes, Amer. J. Math., 103 (1981), 683-690. | MR 83a:58004 | Zbl 0483.58003
,[2] Formal relations between analytic functions, Math. USSR. Izv., 7 (1973), 1056-1088. | Zbl 0297.32007
,[3] Zeros of ideals of Cr functions, J. Math. Kyoto Univ., 17 (1977), 413-424. | MR 55 #13470 | Zbl 0367.58002
,[4] Ideals of differentiable functions, Oxford Univ. Press, (1966).
,[5] Stability of C∞ mappings, III : Finitely determined map-germs, Publ. Math. I.H.E.S., 35 (1969), 127-156. | Numdam | Zbl 0159.25001
,[6] Applications des faiseaux analytiques semi-cohérents aux fonctions différentiables, Ann. Inst. Fourier, 31-1 (1981), 63-82. | Numdam | MR 82g:58015 | Zbl 0462.58005
,[7] Fonctions composées analytiques et différentiables, C.R.A.S., Paris, 282 (1976), 1237-1240. | MR 53 #13628 | Zbl 0334.32012
and ,[8] An extension of Whitney's spectral theorem, Publ. Math. I.H.E.S., 40 (1971), 139-148. | Numdam | MR 51 #6872 | Zbl 0239.46023
,[9] Idéaux de fonctions différentiables, Ergebnisse Der Mathematik, Band 71, Springer (1972). | MR 55 #13472 | Zbl 0251.58001
,