Soit une fibration elliptique et soit une fibre générale. Soit les minima des valeurs non-nulles des nombres d’intersection où parcourt successivement les ensembles suivants : diviseurs effectifs sur , faisceaux inversibles engendrés par sections globales, diviseurs amples et diviseurs très amples. Soit le maximum des multiplicités des fibres de . On démontre que si et seulement si et que si et seulement si .
Let an elliptic fibration with general fibre . Let be the minima of the non-zero intersection numbers where runs successively through the following sets: effective divisors on , invertible sheaves spanned by global sections, ample divisors and very ample divisors. Let be the maximum of the multiplicities of the fibres of . We prove that if and only if and that if and only if .
@article{AIF_1983__33_1_269_0, author = {Buium, Alexandru}, title = {Degree of the fibres of an elliptic fibration}, journal = {Annales de l'Institut Fourier}, volume = {33}, year = {1983}, pages = {269-276}, doi = {10.5802/aif.911}, mrnumber = {84j:14017}, zbl = {0478.14001}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1983__33_1_269_0} }
Buium, Alexandru. Degree of the fibres of an elliptic fibration. Annales de l'Institut Fourier, Tome 33 (1983) pp. 269-276. doi : 10.5802/aif.911. http://gdmltest.u-ga.fr/item/AIF_1983__33_1_269_0/
[1] Surfaces algébriques complexes, Astérisque, 54 (1978). | MR 58 #5686 | Zbl 0394.14014
,[2] Canonical models of surfaces of general type, Publ. Math. IHES, 42 (1972), 171-220. | Numdam | MR 47 #6710 | Zbl 0259.14005
,[3] Le superficie algebriche, Zanichelli, 1949. | MR 11,202b | Zbl 0036.37102
,[4] Principles of algebraic geometry, John Wiley & Sons, New York, 1978. | MR 80b:14001 | Zbl 0408.14001
and ,[5] On compact complex analytic surfaces II, Ann. of Math., 77 (1963). | MR 29 #2822 | Zbl 0118.15802
,[6] Remarks on the Kodaira vanishing theorem, J. of the Indian Math. Soc., 36 (1972), 41-51 ; Supplement to the article “Remarks on the Kodaira vanishing theorem”, J. of the Indian Math. Soc., 38 (1974), 121-124. | MR 48 #8502 | Zbl 0276.32018
,