Pour une application stratifiée , on considère la condition concernant le noyau de la différentielle de . On montre que la condition est équivalent à la condition qui a un contenu géométrique plus évident.
For a stratified mapping , we consider the condition concerning the kernel of the differential of . We show that the condition is equivalent to the condition which has a more obvious geometric content.
@article{AIF_1983__33_1_177_0, author = {Koike, Satoshi}, title = {On condition $(a\_f)$ of a stratified mapping}, journal = {Annales de l'Institut Fourier}, volume = {33}, year = {1983}, pages = {177-184}, doi = {10.5802/aif.908}, mrnumber = {85c:58019}, zbl = {0476.58002}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1983__33_1_177_0} }
Koike, Satoshi. On condition $(a_f)$ of a stratified mapping. Annales de l'Institut Fourier, Tome 33 (1983) pp. 177-184. doi : 10.5802/aif.908. http://gdmltest.u-ga.fr/item/AIF_1983__33_1_177_0/
[1] Topological stability of smooth mappings, Springer Lect. Notes, Berlin Vol. 552 (1976). | MR 55 #9151 | Zbl 0377.58006
, , , ,[2] Notes on topological stability, mimeographed, Harvard Univ. (1970).
,[3] Geometric versions of Whitney regularity for smooth stratifications, Ann. scient. Ec. Norm. Sup., Vol. 12 (1979), 461-471. | Numdam | MR 81g:58002a | Zbl 0456.58002
,