Il existe une infinité d’entiers tels que le plus grand facteur premier de soit au moins . La démonstration de ce résultat combine la méthode de Hooley – pour ramener le problème à l’évaluation de sommes de Kloosterman – et la majoration de sommes de Kloosterman en moyenne obtenue par les auteurs.
There exist infinitely many integers such that the greatest prime factor of is at least . The proof is a combination of Hooley’s method – for reducing the problem to the evaluation of Kloosterman sums – and the majorization of Kloosterman sums on average due to the authors.
@article{AIF_1982__32_4_1_0, author = {Deshouillers, Jean-Marc and Iwaniec, Henryk}, title = {On the greatest prime factor of $n^2+1$}, journal = {Annales de l'Institut Fourier}, volume = {32}, year = {1982}, pages = {1-11}, doi = {10.5802/aif.891}, mrnumber = {84m:10033}, zbl = {0489.10038}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1982__32_4_1_0} }
Deshouillers, Jean-Marc; Iwaniec, Henryk. On the greatest prime factor of $n^2+1$. Annales de l'Institut Fourier, Tome 32 (1982) pp. 1-11. doi : 10.5802/aif.891. http://gdmltest.u-ga.fr/item/AIF_1982__32_4_1_0/
[1] Kloosterman sums and Fourier coefficients of cusp forms, Inv. Math. (to appear). | Zbl 0502.10021
and ,[2] On the greatest prime factor of a quadratic polynomial, Acta Math., 117 (1967), 281-299. | MR 34 #4225 | Zbl 0146.05704
,[3] Applications of sieve methods to the theory of numbers, Cambridge Univ. Press, London, 1976. | Zbl 0327.10044
,[4] Rosser's sieve, Acta Arith., 36 (1980), 171-202. | Zbl 0435.10029
,[5] Report on the theory of numbers, Collected Mathematical Papers, vol. I, reprinted, Chelsea, 1965.
,