On prouve que le fibré normal d’une distribution dans une variété riemannienne admet une courbure conforme si et seulement si est un feuilletage conforme. Alors, est conformément plat si et seulement si est nulle. De plus, on peut exprimer les classes de Pontrjagin de en fonction de .
It is proved that the normal bundle of a distribution on a riemannian manifold admits a conformal curvature if and only if is a conformal foliation. Then is conformally flat if and only if vanishes. Also, the Pontrjagin classes of can be expressed in terms of .
@article{AIF_1982__32_3_261_0, author = {Montesinos, Angel}, title = {Conformal curvature for the normal bundle of a conformal foliation}, journal = {Annales de l'Institut Fourier}, volume = {32}, year = {1982}, pages = {261-274}, doi = {10.5802/aif.889}, mrnumber = {84c:57019}, zbl = {0466.57012}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1982__32_3_261_0} }
Montesinos, Angel. Conformal curvature for the normal bundle of a conformal foliation. Annales de l'Institut Fourier, Tome 32 (1982) pp. 261-274. doi : 10.5802/aif.889. http://gdmltest.u-ga.fr/item/AIF_1982__32_3_261_0/
[1] Handbook of mathematical functions, Dover, New York, 1972. | Zbl 0543.33001
and , Ed.,[2] Some relations between curvature and characteristic classes, Math., Ann., 184 (1970), 257-267. | MR 41 #6105 | Zbl 0181.49901
,[3] On the Bianchi identities, Math. Ann., 199 (1972), 175-204. | MR 49 #3767 | Zbl 0234.53021
,[4] On certain classes of almost product structures, to appear. | Zbl 0538.53044
,[5] On characteristic classes of riemannian, conformal and projective foliations, J. Math. Soc. Japan, 28, 2 (1976), 223-241. | MR 53 #4090 | Zbl 0318.57025
and ,[6] Foliations and compact Lie group actions, Com. Math. Helv., 46 (1971), 467-477. | MR 45 #9353 | Zbl 0228.57020
,[7] On the area of complex manifolds, Seminar on Several Complex Variables, Institute for Advanced Study, 1957. | Zbl 0192.44102
,