The order structure of the space of measures with continuous translation
Sleijpen, Gérard L. G.
Annales de l'Institut Fourier, Tome 32 (1982), p. 67-110 / Harvested from Numdam

Soit G un groupe localement compact, et soit B une norme de fonctions (c’est-à-dire ayant la propriété de Riesz) sur L 1 (G) loc , telle que le sous-espace L (G,B), formé des fonctions localement intégrables de B -norme bornée, soit un espace de fonctions de Banach invariant et solide (solide dans l’espace de Riesz L 1 (G) loc ). Considérons l’espace L RUC (G,B), formé des fonctions dans L (G,B) avec une translation à droite qui est une application continue de G dans L (G,B). On trouvera les caractérisations du cas où L RUC (G,B) est un sous-espace solide (un idéal de Riesz). Ces descriptions sont données à l’aide de la continuité pour l’ordre de la norme B sur certains sous-espaces de L (G). La discussion entière se déroule et les résultats sont formulés dans le contexte des semi-groupes fondamentaux ayant un élément neutre. Tout groupe localement compact est un cas spécial d’un tel semi-groupe.

Let G be a locally compact group, and let B be a function norm on L 1 (G) loc such that the space L (G,B) of all locally integrable functions with finite B -norm is an invariant solid Banach function space. Consider the space L RUC (G,B) of all functions in L (G,B) of which the right translation is a continuous map from G into L (G,B). Characterizations of the case where L RUC (G,B) is a Riesz ideal of L (G,B) are given in terms of the order-continuity of B on certain subspaces of L (G). Throughout the paper, the discussion is carried out in the context of and all the results are formulated for foundation semigroups with identity element; any locally compact group is an example of such a semigroup.

@article{AIF_1982__32_2_67_0,
     author = {Sleijpen, G\'erard L. G.},
     title = {The order structure of the space of measures with continuous translation},
     journal = {Annales de l'Institut Fourier},
     volume = {32},
     year = {1982},
     pages = {67-110},
     doi = {10.5802/aif.873},
     mrnumber = {83k:43005},
     zbl = {0468.43001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1982__32_2_67_0}
}
Sleijpen, Gérard L. G. The order structure of the space of measures with continuous translation. Annales de l'Institut Fourier, Tome 32 (1982) pp. 67-110. doi : 10.5802/aif.873. http://gdmltest.u-ga.fr/item/AIF_1982__32_2_67_0/

[1] A. C. Baker and J. W. Baker, Algebras of measures on a locally compact semigroup II, J. London Math. Soc. (2), 4 (1972), 685-695. | MR 46 #5928 | Zbl 0232.43002

[2] J.-P. Bertrandias, Unions et intersections d'espaces Lp sur un espace localement compact, Bull. Sc. Math., (2), 101 (1977), 209-247. | MR 58 #23529 | Zbl 0376.46016

[3] H. A. M. Dzinotyiweyi and G. L. G. Sleijpen, A note on measures on foundation semigroups with weakly compact orbits, Pac. Journal Math. (1), 81 (1979), 61-69. | MR 80f:43002 | Zbl 0423.43001

[4] D. A. Edwards, On translates of L∞-functions, J. London Math. Soc., 36 (1961), 431-432. | MR 25 #1239 | Zbl 0103.33702

[5] R. E. Edwards, E. Hewitt and G. Ritter, Fourier multipliers for certain spaces of functions with compact support, Inventiones Math., 40 (1977), 37-57. | MR 55 #8696 | Zbl 0351.43006

[6] H. G. Feichtinger, On a class of convolution algebras of functions, Ann. Inst. Fourier, Grenoble, 27, 3 (1977), 135-162. | Numdam | MR 57 #10358 | Zbl 0316.43004

[7] H. G. Feichtinger, Multipliers of Banach spaces of functions on groups, Math. Z., 152 (1976), 47-58. | MR 55 #982 | Zbl 0324.43005

[8] H. G. Feichtinger, A characterization of Wiener's algebra on locally compact groups, Arch. Math., 39 (1977), 136-140. | MR 57 #7035 | Zbl 0363.43003

[9] D. H. Fremlin, Topological Riesz-spaces and measure theory, Cambridge Univ. Press, (1974). | MR 56 #12824 | Zbl 0273.46035

[10] G. G. Gould, On a class of integration spaces, J. London Math. Soc., 34 (1959), 161-172. | MR 21 #3756 | Zbl 0099.09503

[11] H. Kharaghani, The weaky continuous left translations of measures with applications to invariant means, preprint.

[12] T.-S. Liu, A. C. M. Van Rooij and J.-K. Wang, On some group modules related to Wiener's algebra M1, Pac. Journal Math. (2), 55 (1974), 507-520. | Zbl 0303.43011

[13] H. Porta, L. A. Rubel and A. L. Shields, Separability of orbits of functions on locally compact groups, Studia Math., 48 (1973), 89-94. | MR 49 #1005 | Zbl 0238.43003

[14] H. H. Schaeffer, Banach-Lattices and Positive Operators, Springer-Verlag, Berlin Heidelberg New-York, (1974). | Zbl 0296.47023

[15] G. L. G. Sleijpen, Locally compact semigroups and continuous translations of measures, Proc. London Math. Soc., (3), 37 (1978), 75-97. | MR 58 #17682a | Zbl 0371.22004

[16] G. L. G. Sleijpen, Emaciated sets and measures with continuous translations, Proc. London Math. Soc., (3), 37 (1978), 98-119. | MR 58 #17682b | Zbl 0371.22005

[17] G. L. G. Sleijpen, L-multipliers for foundation semigroups with identity element, Proc. London Math. Soc., (3), 39 (1979), 299-330. | MR 80k:43003 | Zbl 0371.22003

[18] G. L. G. Sleijpen, The support of the Wiener algebra on stips, Indag. Math., 42 (1980), 61-82. | MR 81j:43007 | Zbl 0432.43001

[19] G. L. G. Sleijpen, Lp-spaces on foundation semigroups with identity element, Report 7906, Mathematical Institute, Catholic University, Nijmegen (1979).

[20] G. L. G. Sleijpen, Convolution measure algebras on semigroups, Thesis, Catholic University, Nijmegen (1976).