Soit un groupe localement compact, et soit une norme de fonctions (c’est-à-dire ayant la propriété de Riesz) sur , telle que le sous-espace , formé des fonctions localement intégrables de -norme bornée, soit un espace de fonctions de Banach invariant et solide (solide dans l’espace de Riesz ). Considérons l’espace , formé des fonctions dans avec une translation à droite qui est une application continue de dans . On trouvera les caractérisations du cas où est un sous-espace solide (un idéal de Riesz). Ces descriptions sont données à l’aide de la continuité pour l’ordre de la norme sur certains sous-espaces de . La discussion entière se déroule et les résultats sont formulés dans le contexte des semi-groupes fondamentaux ayant un élément neutre. Tout groupe localement compact est un cas spécial d’un tel semi-groupe.
Let be a locally compact group, and let be a function norm on such that the space of all locally integrable functions with finite -norm is an invariant solid Banach function space. Consider the space of all functions in of which the right translation is a continuous map from into . Characterizations of the case where is a Riesz ideal of are given in terms of the order-continuity of on certain subspaces of . Throughout the paper, the discussion is carried out in the context of and all the results are formulated for foundation semigroups with identity element; any locally compact group is an example of such a semigroup.
@article{AIF_1982__32_2_67_0, author = {Sleijpen, G\'erard L. G.}, title = {The order structure of the space of measures with continuous translation}, journal = {Annales de l'Institut Fourier}, volume = {32}, year = {1982}, pages = {67-110}, doi = {10.5802/aif.873}, mrnumber = {83k:43005}, zbl = {0468.43001}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1982__32_2_67_0} }
Sleijpen, Gérard L. G. The order structure of the space of measures with continuous translation. Annales de l'Institut Fourier, Tome 32 (1982) pp. 67-110. doi : 10.5802/aif.873. http://gdmltest.u-ga.fr/item/AIF_1982__32_2_67_0/
[1] Algebras of measures on a locally compact semigroup II, J. London Math. Soc. (2), 4 (1972), 685-695. | MR 46 #5928 | Zbl 0232.43002
and ,[2] Unions et intersections d'espaces Lp sur un espace localement compact, Bull. Sc. Math., (2), 101 (1977), 209-247. | MR 58 #23529 | Zbl 0376.46016
,[3] A note on measures on foundation semigroups with weakly compact orbits, Pac. Journal Math. (1), 81 (1979), 61-69. | MR 80f:43002 | Zbl 0423.43001
and ,[4] On translates of L∞-functions, J. London Math. Soc., 36 (1961), 431-432. | MR 25 #1239 | Zbl 0103.33702
,[5] Fourier multipliers for certain spaces of functions with compact support, Inventiones Math., 40 (1977), 37-57. | MR 55 #8696 | Zbl 0351.43006
, and ,[6] On a class of convolution algebras of functions, Ann. Inst. Fourier, Grenoble, 27, 3 (1977), 135-162. | Numdam | MR 57 #10358 | Zbl 0316.43004
,[7] Multipliers of Banach spaces of functions on groups, Math. Z., 152 (1976), 47-58. | MR 55 #982 | Zbl 0324.43005
,[8] A characterization of Wiener's algebra on locally compact groups, Arch. Math., 39 (1977), 136-140. | MR 57 #7035 | Zbl 0363.43003
,[9] Topological Riesz-spaces and measure theory, Cambridge Univ. Press, (1974). | MR 56 #12824 | Zbl 0273.46035
,[10] On a class of integration spaces, J. London Math. Soc., 34 (1959), 161-172. | MR 21 #3756 | Zbl 0099.09503
,[11] The weaky continuous left translations of measures with applications to invariant means, preprint.
,[12] On some group modules related to Wiener's algebra M1, Pac. Journal Math. (2), 55 (1974), 507-520. | Zbl 0303.43011
, and ,[13] Separability of orbits of functions on locally compact groups, Studia Math., 48 (1973), 89-94. | MR 49 #1005 | Zbl 0238.43003
, and ,[14] Banach-Lattices and Positive Operators, Springer-Verlag, Berlin Heidelberg New-York, (1974). | Zbl 0296.47023
,[15] Locally compact semigroups and continuous translations of measures, Proc. London Math. Soc., (3), 37 (1978), 75-97. | MR 58 #17682a | Zbl 0371.22004
,[16] Emaciated sets and measures with continuous translations, Proc. London Math. Soc., (3), 37 (1978), 98-119. | MR 58 #17682b | Zbl 0371.22005
,[17] L-multipliers for foundation semigroups with identity element, Proc. London Math. Soc., (3), 39 (1979), 299-330. | MR 80k:43003 | Zbl 0371.22003
,[18] The support of the Wiener algebra on stips, Indag. Math., 42 (1980), 61-82. | MR 81j:43007 | Zbl 0432.43001
,[19] Lp-spaces on foundation semigroups with identity element, Report 7906, Mathematical Institute, Catholic University, Nijmegen (1979).
,[20] Convolution measure algebras on semigroups, Thesis, Catholic University, Nijmegen (1976).
,