Pour toute variété complexe à dimensions qui est connexe, paracompacte et Hausdorff, il y a une submersion holomorphe de la boule unité de sur qui est finie.
Every -dimensional complex manifold (connected, paracompact and Hausdorff) is the image of the unit ball in under a finite holomorphic map that is locally biholomorphic.
@article{AIF_1982__32_2_23_0, author = {Fornaess, John Erik and Stout, Edgar Lee}, title = {Regular holomorphic images of balls}, journal = {Annales de l'Institut Fourier}, volume = {32}, year = {1982}, pages = {23-36}, doi = {10.5802/aif.871}, mrnumber = {84h:32026}, zbl = {0452.32008}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1982__32_2_23_0} }
Fornaess, John Erik; Stout, Edgar Lee. Regular holomorphic images of balls. Annales de l'Institut Fourier, Tome 32 (1982) pp. 23-36. doi : 10.5802/aif.871. http://gdmltest.u-ga.fr/item/AIF_1982__32_2_23_0/
[1] Mapping a polydisc onto a complex manifold, Senior Thesis, Princeton University, 1976 (Princeton University Library).
,[2] Spreading polydiscs on complex manifolds, Amer. J. Math., 99 (1977), 933-960. | MR 57 #10009 | Zbl 0384.32004
and ,[3] Polydiscs in complex manifolds, Math. Ann., 227 (1977), 145-153. | MR 55 #8401 | Zbl 0331.32007
and ,[4] Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970. | MR 43 #3503 | Zbl 0207.37902
,[5] Theory of Functions of a Complex Variable, vol. III, Prentice-Hall, Englewood Cliffs, 1967. | MR 35 #6799 | Zbl 0148.05201
,[6] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. | MR 44 #7280 | Zbl 0207.13501
,