Un fibré vectoriel holomorphe sur est dit uniforme si ses images réciproques sous tous les plongements linéaires sont isomorphes. Nous classons les fibrés uniformes de rang 4 sur .
A holomorphic vector bundle on is said to be uniform if its pull-backs by all linear embeddings are isomorphic. We classify uniform bundles of rank 4 on .
@article{AIF_1981__31_4_89_0, author = {Elencwajg, Georges}, title = {Fibr\'es uniformes de rang \'elev\'e sur ${\mathbb {P}}\_2$}, journal = {Annales de l'Institut Fourier}, volume = {31}, year = {1981}, pages = {89-114}, doi = {10.5802/aif.850}, mrnumber = {83c:14012}, zbl = {0483.14003}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1981__31_4_89_0} }
Elencwajg, Georges. Fibrés uniformes de rang élevé sur ${\mathbb {P}}_2$. Annales de l'Institut Fourier, Tome 31 (1981) pp. 89-114. doi : 10.5802/aif.850. http://gdmltest.u-ga.fr/item/AIF_1981__31_4_89_0/
[1] Fibrés uniformes sur P2, Thèse 3e cycle, (1980). | Zbl 0456.14012
,[2] Les fibrés uniformes de rang 3 sur P2(C) sont homogènes, Math. Ann., 231 (1978), 217-227. | MR 58 #1278 | Zbl 0378.14003
,[3] Des fibrés uniformes non homogènes, Math. Ann., 239 (1979), 185-192. | MR 80k:32030 | Zbl 0498.14007
,[4] Thèse de Doctorat d'État, Nice (1979).
,[5] Bounding Cohomology groups of Vector Bundles on Pn, Math. Ann., 246 (1980), 251-270. | MR 81h:32035 | Zbl 0432.14011
et ,[6] Les fibrés uniformes de rang au plus n sur Pn(C) sont ceux qu'on croit, Proceedings of the Nice Conference 1979 on Vector Bundles and Differential equations, Birkhäuser, Boston, 1980. | MR 81k:14015 | Zbl 0456.32009
, et ,[7] Algebraic Geometry. Graduate texts in mathematics, Vol. 52, Berlin, Heidelberg, New-York, Springer-Verlag, 1977. | MR 57 #3116 | Zbl 0367.14001
,[8] Topological Methods in Algebraic Geometry, 3rd ed. Berlin, Heidelberg, New-York. Springer Verlag 1966. | MR 34 #2573 | Zbl 0138.42001
,[9] The enumerative theory of singularities, Real and Complex Singularities, Oslo 1976, Sÿthoff et Noordhoof (1977). | Zbl 0385.14018
,[10] Vector Bundles on Complex Projective Spaces, Progress in Mathematics, 3, Boston, Basel, Stuttgart, Birkhäuser, 1980. | MR 81b:14001 | Zbl 0438.32016
, et ,[11] Der Satz von Grauert-Mülich für beliebige semistabile holomorphe Vektorraumbündel über dem n-dimensionalen komplex-projektiven Raum, Math. Ann., 243 (1979), 131-141. | MR 81b:14008 | Zbl 0435.32018
,[12] On uniform vector bundles, Math. Ann., 195 (1972), 246-248. | MR 45 #276 | Zbl 0215.43202
.