Soit une mesure de Radon positive sur la droite dont tous les moments existent. Nous démontrons que l’ensemble des polynômes n’est pas dense dans pour , si est indéterminée. Si est déterminée est dense dans pour , mais non nécessairement pour . Ensuite, nous étudions l’ensemble convexe et compact des mesures de Radon positives admettant les mêmes moments que .
Let be a positive Radon measure on the real line having moments of all orders. We prove that the set of polynomials is note dense in for any , if is indeterminate. If is determinate, then is dense in for , but not necessarily for . The compact convex set of positive Radon measures with same moments as is studied in some details.
@article{AIF_1981__31_3_99_0, author = {Berg, Christian and Christensen, J. P. Reus}, title = {Density questions in the classical theory of moments}, journal = {Annales de l'Institut Fourier}, volume = {31}, year = {1981}, pages = {99-114}, doi = {10.5802/aif.840}, mrnumber = {84i:44006}, zbl = {0437.42007}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1981__31_3_99_0} }
Berg, Christian; Christensen, J. P. Reus. Density questions in the classical theory of moments. Annales de l'Institut Fourier, Tome 31 (1981) pp. 99-114. doi : 10.5802/aif.840. http://gdmltest.u-ga.fr/item/AIF_1981__31_3_99_0/
[1] The classical moment problem, Oliver and Boyd, Edinburgh, 1965. | Zbl 0173.41001
,[2] Wahrscheinlichkeitstheorie und Grundzüge der Masstheorie, De Gruyter, Berlin, 1978. | Zbl 0381.60001
,[3] Orthogonal polynomials, Pergamon Press, Oxford, 1971. | Zbl 0226.33014
,[4] Remark on orthonormal sets in L2 (a, b), Amer. Math. Monthly, 61 (1954), 249-250. | MR 15,631e | Zbl 0055.06002
,[5] Extremal spectral functions of a symmetric operator, Izv. Akad. Nauk. SSSR, ser. matem., 11 ; Dokl. Akad. Nauk. SSSR, 54 (1946), 7-9. | MR 8,386g | Zbl 0061.26006
,[6] Lectures on Choquet's Theorem, Van Nostrand, New York, 1966. | MR 33 #1690 | Zbl 0135.36203
,[7] Sur le problème des moments et le théorème de Parseval correspondant, Acta Litt. Ac. Sci., Szeged., 1 (1923), 209-225. | JFM 49.0708.02
,[8] The problem of moments, AMS, New York, 1943. | MR 5,5c | Zbl 0063.06973
and ,[9] Introduction to Fourier Analysis on Euclidean spaces, Princeton University Press, 1971. | MR 46 #4102 | Zbl 0232.42007
and ,