Nous étudions les sous-ensembles du bord d’un domaine strictement pseudoconvexe de dimension , où la valeur absolue d’une fonction de ou de prend son maximum. Ces ensembles sont les maximum modulus sets du titre. Si est une variété différentiable de dimension réelle , et si est l’ensemble des points où la valeur absolue d’une fonction atteint son maximum, alors est totalement réelle et elle admet une structure feuilletée avec comme feuilles des variétés compactes qui sont des ensembles pics d’interpolation. Il y a une converse partielle dans le cas analytique réel. Deux fonctions de qui ont la même variété différentiable de dimension comme “maximum modulus set”, satisfont une relation analytique, et cette relation est polynomiale si une classe particulière de s’annule ou si est polynomialement convexe. Finalement, pour toute fonction , la dimension topologique de l’ensemble des points où prend son maximum est au plus .
We investigate some aspects of maximum modulus sets in the boundary of a strictly pseudoconvex domain of dimension . If is a smooth manifold of dimension and a maximum modulus set, then it admits a unique foliation by compact interpolation manifolds. There is a semiglobal converse in the real analytic case. Two functions in with the same smooth -dimensional maximum modulus set are analytically related and are polynomially related if a certain homology class in vanishes or if is polynomially convex. Finally, the maximum modulus set of an arbitrary has dimension, in the topological sense, not exceeding .
@article{AIF_1981__31_3_37_0, author = {Duchamp, Thomas and Stout, Edgar Lee}, title = {Maximum modulus sets}, journal = {Annales de l'Institut Fourier}, volume = {31}, year = {1981}, pages = {37-69}, doi = {10.5802/aif.837}, mrnumber = {83d:32019}, zbl = {0439.32007}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1981__31_3_37_0} }
Duchamp, Thomas; Stout, Edgar Lee. Maximum modulus sets. Annales de l'Institut Fourier, Tome 31 (1981) pp. 37-69. doi : 10.5802/aif.837. http://gdmltest.u-ga.fr/item/AIF_1981__31_3_37_0/
[1] Polynomial approximation and hulls in sets of finite linear measure in Cn, Amer. J. Math., 93 (1971), 65-74. | MR 44 #1841 | Zbl 0221.32011
,[2] A topological property of Runge pairs, Ann. Math., (2) 76 (1962), 499-509. | MR 25 #4128 | Zbl 0178.42703
and ,[3] A generalization of the Stone-Weierstrass theorem, Pacific J. Math., 11 (1961), 777-783. | MR 24 #A3502 | Zbl 0104.09002
,[4] Contact Manifolds in Riemannian Geometry, Springer Lecture Notes in Mathematics, vol. 509, Springer-Verlag, Berlin, Heidelberg, New York, 1976. | MR 57 #7444 | Zbl 0319.53026
,[5] Cohomology of maximal ideal spaces, Bull. Amer. Math. Soc., 67 (1961), 515-516. | MR 24 #A440 | Zbl 0107.09501
,[6] Extending functions from submanifolds of the boundary, Duke Math., J., 43 (1976), 391-404. | MR 54 #3028 | Zbl 0328.32013
and ,[7] Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France, 85 (1957), 77-99. | Numdam | MR 20 #1339 | Zbl 0083.30502
,[8] Ensembles pics pour A∞ (D), Ann. Inst. Fourier, Grenoble, XXIX (1979), 171-200. | Numdam | MR 81c:32036 | Zbl 0398.32004
and ,[9] Peak interpolation sets for some algebras of analytic functions, Pacific J. Math., 41 (1972), 81-87. | MR 46 #9394 | Zbl 0232.46055
and ,[10] Geometric Measure Theory, Springer-Verlag New York, Inc., New York, 1969. | MR 41 #1976 | Zbl 0176.00801
,[11] The classification of Legendre embeddings, to appear.
,[12] Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), 529-569. | MR 54 #10669 | Zbl 0334.32020
,[13] Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. | MR 31 #4927 | Zbl 0141.08601
and ,[14] Families of analytic discs in Cn with boundaries on a prescribed CR submanifold, Ann. Scuola Norm. Sup. Pisa Sci., (IV) V, (1978), 327-380. | Numdam | MR 80c:32023 | Zbl 0399.32008
and ,[15] Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962. | MR 24 #A2844 | Zbl 0117.34001
,[16] Dimension Theory, Princeton University Press, Princeton, 1948. | Zbl 0036.12501
and ,[17] Behavior of Holomorphic Functions at Generating Submanifolds of the Boundary, doctoral dissertation, University of Washington, Seattle, 1979.
,[18] Lectures on the Quantitative Theory of Foliations, CBMS Regional Conference Series in Mathematics, Number 27, American Mathematical Society, Providence, Rhode Island, 1977. | Zbl 0343.57014
,[19] Advanced Calculus, Addison-Wesley, Reading, 1968. | MR 37 #2912 | Zbl 0162.35301
and ,[20] Topology from the Differentiable Viewpoint, University Press of Virginia, Charlottesville, 1965. | MR 37 #2239 | Zbl 0136.20402
,[21] Geometrisch Untersuchungen allgemeiner und einiger spezieller Pseudokonvexer Gebiete, Bonner Math. Schriften, 78, Bonn, 1975. | Zbl 0331.32017
,[22] A boundary uniqueness theorem for holomorphic functions of several complex variables, Math. Notes, 15 (1974), 116-120. | MR 50 #2558 | Zbl 0292.32002
,[23] Ck approximation by holomorphic functions and -closed forms on Ck submanifolds of a complex manifold, Math. Ann., 210 (1974), 105-122. | Zbl 0275.32008
and ,[24] Sur certaines propriétés topologiques des variétés feuilletées, Act. Sci. Indust., 1183, Hermann, Paris, 1952. | MR 14,1113a | Zbl 0049.12602
,[25] Peak interpolation manifolds of class C1, Pacific J. Math., 75 (1978), 267-279. | MR 58 #6346 | Zbl 0383.32007
,[26] Lectures on the Edge-of-the-Wedge Theorem, CBMS Regional Conference Series in Mathematics, Number 6, American Mathematical Society, Providence, Rhode Island, 1971. | MR 46 #9389 | Zbl 0214.09001
,[27] Boundary properties of functions of several complex variables, J. Math. Mech., 14 (1965), 991-1006. | MR 32 #230 | Zbl 0147.11601
and ,[28] A boundary uniqueness theorem in Cn, Math. USSR Sbornik, 30 (1976), 501-514. | Zbl 0385.32007
,[29] Nonlinear Functional Analysis, Gordon and Breach, New York, 1969. | MR 55 #6457 | Zbl 0203.14501
,[30] On the continuation of analytic curves, Math. Ann., 184 (1970), 268-274. | MR 46 #3828 | Zbl 0176.38003
,[31] Valeurs au bord de fonctions holomorphes et ensembles polynomialement convexes, Séminaire Pierre Lelong 1975-1976. Springer Lecture Notes in Mathematics, vol. 578, Springer-Verlag, Berlin, Heidelberg, New York, 1977. | Zbl 0382.32004
,[32] Analytische Projektion komplexer Mannigfaltigkeiten, Colloque sur les Fonctions de Plusieurs Variables, Brussels, 1953. George Throne, Leige and Masson, Paris, 1953. | Zbl 0052.08604
,[32a] Die Existenz Komplexer Basen zu holomorphen Abbildungen, Math. Ann., 136 (1958), 1-8. | MR 20 #4657 | Zbl 0081.30202
,[33] Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, 1964. | MR 33 #1797 | Zbl 0129.13102
,[34] The Theory of Uniform Algebras, Bogden and Quigley, Tarrytown-on-Hudson and Belmont, 1971. | MR 54 #11066 | Zbl 0286.46049
,[35] Interpolation manifolds, Recent Developments in Several Complex Variables, Annals of Mathematics Studies, to appear. | Zbl 0486.32010
,[36] A peak set for the disc algebra of metric dimension 2.5 in the three-dimensional unit sphere, Math. USSR Izvestija, 11 (1977), 370-377. | MR 58 #6349 | Zbl 0379.46048
,[37] Zero-sets of continuous holomorphic functions on the boundary of a strongly pseudoconvex domain, J. London Math. Soc., 18 (1978), 484-488. | MR 80e:32010 | Zbl 0413.32008
,[38] Compact real submanifolds of a complex manifold with nondegenerate holomorphic tangent bundles, Math. Ann., 179 (1969), 123-129. | MR 38 #6104 | Zbl 0167.21604
,[39] Real analytic subvarieties and holomorphic approximation, Math. Ann., 179 (1969), 130-141. | MR 39 #476 | Zbl 0167.06704
,[40] Trigonometric Series, vol. I., Cambridge University Press, Cambridge, 1959. | Zbl 0085.05601
,