Dans cet article nous généralisons les résultats obtenus par J. Chazarain sur le spectre d’opérateurs de Schrödinger lorsque . Nous étendons ses résultats aux opérateurs pseudo-différentiels globalement elliptiques d’ordre .
In this article we extend results obtained by J. Chazarain about the spectrum of Schrödinger operators: when approach 0. We obtain the same results for globally elliptic pseudodifferential operators of order .
@article{AIF_1981__31_3_169_0, author = {Robert, Didier and Helffer, Bernard}, title = {Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques}, journal = {Annales de l'Institut Fourier}, volume = {31}, year = {1981}, pages = {169-223}, doi = {10.5802/aif.844}, mrnumber = {83b:58072}, zbl = {0451.35022}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1981__31_3_169_0} }
Robert, Didier; Helffer, Bernard. Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques. Annales de l'Institut Fourier, Tome 31 (1981) pp. 169-223. doi : 10.5802/aif.844. http://gdmltest.u-ga.fr/item/AIF_1981__31_3_169_0/
[1] On some oscillatory integral transformation in L2(Rn), Japan J. Math., 4 (1978), 299-361. | MR 80d:47076 | Zbl 0402.44008
and ,[2] A general calculus of pseudodifferential operators, Duke Math. J., 42 (1975), 1-42. | MR 51 #3972 | Zbl 0343.35078
,[3] Semi-classical approximations in wave mechanics, Rep. Prog. Phys., 35 (1972), 315-397.
and ,[4] Spectre d'un hamiltonien quantique et mécanique classique, Comm. in Partial diff. Equat., n° 6 (1980), 595-644. | MR 82d:58064 | Zbl 0437.70014
,[5] Spectre joint d'opérateurs pseudodifférentiels qui commutent. I - Le cas non intégrable, Duke Math. J., 46 (1979), 169-182. | MR 81i:58045 | Zbl 0411.35073
,[6] Oscillatory integrals..., Comm. Pure Appl. Math., 27 (1974), 207-281. | Zbl 0285.35010
,[7] Spectrum of elliptic operators and periodic geodesics, Inv. Math., 29 (1975), 39-79. | MR 53 #9307 | Zbl 0307.35071
and ,[8] Semi-classical approximations of nuclear hamiltonians, I - Spin-independant potentials, Annals of physics, 123 (1979), 359-380.
and ,[9] Some problems in integral geometry and some related problems in microlocal analysis, Amer. J. Math., 101 (1979), 915-955. | MR 82b:58087 | Zbl 0446.58019
and ,[10] The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218. | MR 58 #29418 | Zbl 0164.13201
,[11] The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math., 32 (1979), 359-443. | MR 80j:47060 | Zbl 0388.47032
,[12] On the asymptotic distribution of eigenvalues of pseudodifferential operators in Rn, Arkiv för Math., 17 n° 2 (1979), 296-313. | MR 82i:35140 | Zbl 0436.35064
,[13] Analyse lagrangienne et mécanique quantique, Collège de France (1976-1977).
,[14] Théorie des perturbations et méthodes asymptotiques, Dunod, Paris (1972), traduction. | Zbl 0247.47010
,[15] Mécanique quantique t. 1, Dunod, Paris (1962).
,[16] Propriétés spectrales d'opérateurs pseudodifferentiels, Comm. in Partial diff. Equat., 3 (1978), 755-826. | MR 80b:35112 | Zbl 0392.35056
,[17] Pseudodifferential operators and spectral theory, Nauka Moskva, 1978. | Zbl 0451.47064
,[18] On the asymptotic distribution of eigen values of pseudodifferential operators in Rn, Math. USSR Sbornik, 21 (1973), 565-583. | MR 48 #9465 | Zbl 0286.35059 | Zbl 0295.35068
and ,[19] An algebra of pseudodifferential operators and the asymptotics of quantum mechanics, J. of Funct. Analysis, 29 n° 1 (1978), 104-132. | MR 58 #14697 | Zbl 0386.47031
,