Spherical summation: a problem of E.M. Stein
Cordoba, Antonio ; Lopez-Melero, B.
Annales de l'Institut Fourier, Tome 31 (1981), p. 147-152 / Harvested from Numdam

Écrivons (T R λ f) ^(ξ)=(1-|ξ| 2 /R 2 ) + λ f ^(ξ). E. Stein a supposé que

j|TRjλfi|21/2pCj|fj|21/2p

pour λ>0, 4 3p4 et C=C λ,p . Nous démontrons cette conjecture. Nous démontrons aussi f(x)=lim j T 2 j λ f(x) presque partout. Nous supposons seulement 4 3+2λ<p<4 1-2λ.

Writing (T R λ f) ^(ξ)=(1-|ξ| 2 /R 2 ) + λ f ^(ξ). E. Stein conjectured

j|TRjλfi|21/2pCj|fj|21/2p

for λ>0, 4 3p4 and C=C λ,p . We prove this conjecture. We prove also f(x)=lim j T 2 j λ f(x) a.e. We only assume 4 3+2λ<p<4 1-2λ.

@article{AIF_1981__31_3_147_0,
     author = {Cordoba, Antonio and Lopez-Melero, B.},
     title = {Spherical summation: a problem of E.M. Stein},
     journal = {Annales de l'Institut Fourier},
     volume = {31},
     year = {1981},
     pages = {147-152},
     doi = {10.5802/aif.842},
     mrnumber = {83g:42008},
     zbl = {0464.42006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1981__31_3_147_0}
}
Cordoba, Antonio; Lopez-Melero, B. Spherical summation: a problem of E.M. Stein. Annales de l'Institut Fourier, Tome 31 (1981) pp. 147-152. doi : 10.5802/aif.842. http://gdmltest.u-ga.fr/item/AIF_1981__31_3_147_0/

[1] E.M. Stein, Some problems in harmonic analysis, Proc. Sym. Pure Math., Volume XXXV, Part. 1, (1979). | MR 80m:42027 | Zbl 0445.42006

[2] L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math., 44 (1972), 288-299. | MR 50 #14052 | Zbl 0215.18303

[3] A. Cordoba, The Kakeya maximal function and the spherical summation multipliers, Am. J. of Math., Vol. 99, n° 1, (1977), 1-22. | MR 56 #6259 | Zbl 0384.42008

[4] A. Cordoba, Some remarks on the Littlewood-Paley theory, To appear, Rendiconti di Circolo Mat. di Palermo. | Zbl 0506.42022

[5] C. Fefferman, The multiplier problem for the ball, Annals of Math., 94 (1971), 330-336. | MR 45 #5661 | Zbl 0234.42009