Écrivons . E. Stein a supposé que
pour , et . Nous démontrons cette conjecture. Nous démontrons aussi presque partout. Nous supposons seulement .
Writing . E. Stein conjectured
for , and . We prove this conjecture. We prove also a.e. We only assume .
@article{AIF_1981__31_3_147_0, author = {Cordoba, Antonio and Lopez-Melero, B.}, title = {Spherical summation: a problem of E.M. Stein}, journal = {Annales de l'Institut Fourier}, volume = {31}, year = {1981}, pages = {147-152}, doi = {10.5802/aif.842}, mrnumber = {83g:42008}, zbl = {0464.42006}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1981__31_3_147_0} }
Cordoba, Antonio; Lopez-Melero, B. Spherical summation: a problem of E.M. Stein. Annales de l'Institut Fourier, Tome 31 (1981) pp. 147-152. doi : 10.5802/aif.842. http://gdmltest.u-ga.fr/item/AIF_1981__31_3_147_0/
[1] Some problems in harmonic analysis, Proc. Sym. Pure Math., Volume XXXV, Part. 1, (1979). | MR 80m:42027 | Zbl 0445.42006
,[2] Oscillatory integrals and a multiplier problem for the disc, Studia Math., 44 (1972), 288-299. | MR 50 #14052 | Zbl 0215.18303
and ,[3] The Kakeya maximal function and the spherical summation multipliers, Am. J. of Math., Vol. 99, n° 1, (1977), 1-22. | MR 56 #6259 | Zbl 0384.42008
,[4] Some remarks on the Littlewood-Paley theory, To appear, Rendiconti di Circolo Mat. di Palermo. | Zbl 0506.42022
,[5] The multiplier problem for the ball, Annals of Math., 94 (1971), 330-336. | MR 45 #5661 | Zbl 0234.42009
,