Le but de ce travail est de définir un homomorphisme caractéristique pour un sous-feuilletage et d’exposer la relation existante entre cet homomorphisme et l’homomorphisme caractéristique (à la Bott) pour chaque feuilletage. En plus, on donne deux applications : 1) on prouve que le feuilletage de Yamato en codimension 2 n’est pas homotopique à dans un sous-feuilletage de codimension (1,2); 2) on obtient une obstruction à l’existence de transformations infinitésimales d’un feuilletage qui soient partout indépendantes et transverses, et telles que et ces transformations engendrent un nouveau feuilletage .
This paper is devoted to define a characteristic homomorphism for a subfoliation and to study its relation with the usual characteristic homomorphism for each foliation (as defined by Bott). Moreover, two applications are given: 1) the Yamato’s 2-codimensional foliation is shown to be no homotopic to in a (1,2)-codimensional subfoliation; 2) an obstruction to the existence of everywhere independent and transverse infinitesimal transformations of a foliation is obtained, when and these transformations generated a new foliation .
@article{AIF_1981__31_2_61_0, author = {Cordero, Luis A. and Masa, X.}, title = {Characteristic classes of subfoliations}, journal = {Annales de l'Institut Fourier}, volume = {31}, year = {1981}, pages = {61-86}, doi = {10.5802/aif.829}, mrnumber = {83a:57033}, zbl = {0442.57009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1981__31_2_61_0} }
Cordero, Luis A.; Masa, X. Characteristic classes of subfoliations. Annales de l'Institut Fourier, Tome 31 (1981) pp. 61-86. doi : 10.5802/aif.829. http://gdmltest.u-ga.fr/item/AIF_1981__31_2_61_0/
[1] Lectures on characteristic classes and foliations, Lectures on Algebraic and Differential Topology, Lecture Notes in Math., vol. 279, Springer-Verlag, Berlin and New York, 1972, pp. 1-94. | MR 50 #14777 | Zbl 0241.57010
,[2] On characteristic classes of Г-foliations, Bull. Amer. Math. Soc., 78 (1972), 1039-1044. | MR 46 #6370 | Zbl 0262.57010
and ,[3] Exotic characteristic classes and subfoliations, Ann. Inst. Fourier, Grenoble, 26 (1976), 225-237; errata, ibid. 27, fasc. 4 (1977). | Numdam | MR 53 #6584 | Zbl 0313.57010
and ,[4] Characteristic classes of flags of foliations. Functional Anal. Appl., 9 (1975), 312-317. | MR 53 #6585 | Zbl 0328.57008
,[5] Cohomologies d'algèbres de Lie de champs de vecteurs, Séminaire Bourbaki, 25e année (1971/1972), n° 421. | Numdam | Zbl 0296.17010
,[6] Sur les classes caractéristiques des feuilletages, Séminaire Bourbaki, 24e année (1971/1972), n° 412. | Numdam | Zbl 0257.57011
,[7] Cohomology of Lie algebras, Ann. of Math., 57 (1953), 591-603. | MR 14,943c | Zbl 0053.01402
and ,[8] Foliated bundles and characteristic classes, Lecture Notes in Math., vol. 493, Springer-Verlag, Berlin and New York, 1975. | MR 53 #6587 | Zbl 0308.57011
and ,[9] Obstructions to foliation-preserving Lie group actions, Topology, 18 (1979), 255-256. | MR 80m:57020 | Zbl 0413.57022
and ,[10] Obstructions to foliation-preserving vector fields, To appear in J. Pure and Appl. Algebra. | Zbl 0523.57014
and ,[11] Classes caractéristiques exotiques et J-connexité des espaces de connexions, Ann. Inst. Fourier, Grenoble, 24, 3 (1974), 267-306. | Numdam | MR 50 #14784 | Zbl 0268.57009
,[12] Sur les classes exotiques des feuilletages. Géométrie Differentielle, Colloque, Santiago de Compostela, Espagne 1972, Lecture Notes in Math., vol. 392, Springer-Verlag, Berlin and New York, 1974, pp. 37-42. | MR 50 #14785 | Zbl 0292.57021
,[13] A property of a characteristic class of an orbit foliation, Transform. Groups, Proc. Conf. Univ. Newcastle 1976, London Math. Soc. Lecture Notes Series, vol. 26 (1977), Cambridge Univ. Press, Cambridge, pp. 190-203. | MR 57 #13974 | Zbl 0356.57013
,[14] Almost-multifoliate Riemannian manifolds, An. St. Univ. Iasi, 16 (1970), 97-103. | MR 43 #1075 | Zbl 0202.53003
,[15] Examples of foliations with non-trivial exotic characteristic classes, Osaka J. Math., 12 (1975), 401-417. | MR 53 #1607 | Zbl 0318.57026
,