On démontre l’existence de solutions classiques pour certaines équations elliptiques du deuxième ordre, fortement non linéaires, ayant des coefficients d’ordre zéro assez grands. On utilise essentiellement une estimation a priori impliquant que la norme de la solution ne peut appartenir à un intervalle de la demi-droite réelle positive.
We prove the existence of classical solutions to certain fully non-linear second order elliptic equations with large zeroth order coefficient. The principal tool is an a priori estimate asserting that the -norm of the solution cannot lie in a certain interval of the positive real axis.
@article{AIF_1981__31_2_175_0, author = {Evans, L. C. and Lions, Pierre-Louis}, title = {Fully nonlinear second order elliptic equations with large zeroth order coefficient}, journal = {Annales de l'Institut Fourier}, volume = {31}, year = {1981}, pages = {175-191}, doi = {10.5802/aif.834}, mrnumber = {82m:35047}, zbl = {0441.35023}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1981__31_2_175_0} }
Evans, L. C.; Lions, Pierre-Louis. Fully nonlinear second order elliptic equations with large zeroth order coefficient. Annales de l'Institut Fourier, Tome 31 (1981) pp. 175-191. doi : 10.5802/aif.834. http://gdmltest.u-ga.fr/item/AIF_1981__31_2_175_0/
[1] On solving certain nonlinear partial differential equations by accretive operator methods, to appear in Isr. J. Math., (1981). | Zbl 0454.35038
,[2] Stochastic optimal switching and the Dirichlet problem for the Bellman equation, Trans. Am. Math. Soc., 253 (1979), 365-389. | MR 80f:93091 | Zbl 0425.35046
and ,[3] Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. | MR 56 #3433 | Zbl 0224.35002
,[4] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | Zbl 0164.13002
and ,[5] Résolution des problèmes de Bellman-Dirichlet, to appear in Acta Math., (1981). | MR 83c:49038 | Zbl 0467.49016
,[6] Résolution de problèmes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74 (1980), 335-354. | MR 82a:35034 | Zbl 0449.35036
,[7] On the topological character of general nonlinear operators, Doklady, 239 (1978), 538-541 (Russian). | MR 58 #6678 | Zbl 0393.35031
,