Sur certains espaces de fonctions, chaque forme mesurable est une mesure; ceci renforce les résultats connus qui affirment que certains espaces de mesures sont faiblement séquentiellement complets. Nous tirons plusieurs conséquences dans la forme suivante : si l’espace des formes invariantes sur un espace de fonctions est séparable, alors chaque forme invariante est une mesure.
We prove that all measurable functionals on certain function spaces are measures; this improves the (known) results about weak sequential completeness of spaces of measures. As an application, we prove several results of this form: if the space of invariant functionals on a function space is separable then every invariant functional is a measure.
@article{AIF_1981__31_2_137_0, author = {Christensen, J. P. Reus and Pachl, J. K.}, title = {Measurable functionals on function spaces}, journal = {Annales de l'Institut Fourier}, volume = {31}, year = {1981}, pages = {137-152}, doi = {10.5802/aif.832}, mrnumber = {82j:46035}, zbl = {0437.46022}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1981__31_2_137_0} }
Christensen, J. P. Reus; Pachl, J. K. Measurable functionals on function spaces. Annales de l'Institut Fourier, Tome 31 (1981) pp. 137-152. doi : 10.5802/aif.832. http://gdmltest.u-ga.fr/item/AIF_1981__31_2_137_0/
[1] Topology and Borel Structure, North-Holland, 1974.
,[2] Uniform measures and co-Saks spaces, Proc. Internat. Seminar Functional Analysis, Rio de Janeiro 1978. | Zbl 0462.46014
and ,[3] Property Γ and inner amenability, Proc. Amer. Math. Soc., 47 (1975), 483-486. | MR 50 #8100 | Zbl 0321.22011
,[4] Four functors into paved spaces, Seminar Uniform Spaces 1973-1974, Math. Inst. Czechoslovak Academy of Sciences, 1975. | Zbl 0369.54012
,[5] Mesures uniformes, C.R. Acad. Sc., Paris, 277 (1973), A105-A108. | Zbl 0285.46040
,[6] A survey of separable descriptive theory of sets and spaces, Czechoslovak Math. J., 20 (95) (1970), 406-467. | MR 42 #1660 | Zbl 0223.54028
,[7] On amenable semigroups with a finite-dimensional set of invariant means I, Illinois J. Math., 7 (1963), 38-48. | Zbl 0113.09801
,[8] On left amenable semigroups which admit countable left invariant means, Bull. Amer. Math. Soc., 69 (1963), 101-105. | MR 26 #5087 | Zbl 0202.40702
,[9] Exposed points of convex sets and weak sequential convergence, Memoirs Amer. Math. Soc., 123 (1972). | MR 51 #1343 | Zbl 0258.46001
,[10] Invariant Means on Topological Groups, Van Nostrand 1969. | MR 40 #4776 | Zbl 0174.19001
,[11] Uniform Spaces, Amer. Math. Soc., 1964. | MR 30 #561 | Zbl 0124.15601
,[12] On the dimension of left invariant means and left thick subsets, Trans. Amer. Math. Soc., 231 (1977), 507-518. | MR 56 #6280 | Zbl 0371.43005
,[13] On certain actions of semi-groups on L-spaces, Stud. Math., 29 (1967), 63-77. | MR 36 #6910 | Zbl 0232.22009
,[14] Cartesian products of Baire spaces, Fund. Math., 49 (1961), 157-166. | MR 25 #4055 | Zbl 0113.16402
,[15] Measures as functionals on uniformly continuous functions, Pacific J. Math., 82 (1979), 515-521. | MR 80j:28012 | Zbl 0419.28006
,[16] Räume von stetigen Funktionen und summenstetige Abbildungen, Ludwig-Maximilians-Universität München, 1978.
,[17] Espaces de Banach faiblement K-analytiques, C.R. Acad. Sc., Paris, 284 (1977), A 745-748. | MR 55 #8760 | Zbl 0349.46018
,[18] Measures on topological spaces (Russian), Mat. Sbornik, 55 (97) (1961), 33-100. - Amer. Math. Soc. Transl., (2) 48 (1965), 161-228. | MR 26 #6342 | Zbl 0152.04202
,[19] l1-continuous partitions of unity on normed spaces, Czechoslovak Math. J., 26 (101) (1976), 319-329. | MR 53 #14429 | Zbl 0333.46007
,