BMO and commutators of martingale transforms
Janson, Svante
Annales de l'Institut Fourier, Tome 31 (1981), p. 265-270 / Harvested from Numdam

Le commutateur entre la multiplication par une fonction et une transformation des martingales d’un type certain est un opérateur borné sur L p , 1<p<, si et seulement si la fonction appartient à BMO. C’est une analogie pour martingales d’un résultat de Coifman, Rochberg et Weiss.

The commutator of multiplication by a function and a martingale transform of a certain type is a bounded operator on L p , 1<p<, if and only if the function belongs to BMO. This is a martingale version of a result by Coifman, Rochberg and Weiss.

@article{AIF_1981__31_1_265_0,
     author = {Janson, Svante},
     title = {BMO and commutators of martingale transforms},
     journal = {Annales de l'Institut Fourier},
     volume = {31},
     year = {1981},
     pages = {265-270},
     doi = {10.5802/aif.827},
     mrnumber = {83b:60038},
     zbl = {0437.42015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1981__31_1_265_0}
}
Janson, Svante. BMO and commutators of martingale transforms. Annales de l'Institut Fourier, Tome 31 (1981) pp. 265-270. doi : 10.5802/aif.827. http://gdmltest.u-ga.fr/item/AIF_1981__31_1_265_0/

[1] R.R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611-635. | MR 54 #843 | Zbl 0326.32011

[2] C. Fefferman and E.M. Stein, Hp-spaces of several variables, Acta Math., 129 (1972), 137-193. | MR 56 #6263 | Zbl 0257.46078

[3] S. Janson, Characterizations of H1 by singular integral transforms on martingales and Rn, Math. Scand., 41 (1977), 140-152. | MR 57 #3729 | Zbl 0369.42005

[4] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Mat., 16 (1978), 263-270. | MR 80j:42034 | Zbl 0404.42013

[5] A. Uchiyama, Compactness of operators of Hankel type, Tôhoku Math. J., 30 (1978), 163-171. | MR 57 #7243 | Zbl 0384.47023