Les transformées de Riesz d’une mesure positive singulière satisfont à l’inégalité faible
où est la mesure de Lebesgue et une constante positive dépendant de .
The Riesz transforms of a positive singular measure satisfy the weak type inequality
where denotes Lebesgue measure and is a positive constant only depending on .
@article{AIF_1981__31_1_257_0, author = {Varopoulos, Nicolas Th.}, title = {A theorem on weak type estimates for Riesz transforms and martingale transforms}, journal = {Annales de l'Institut Fourier}, volume = {31}, year = {1981}, pages = {257-264}, doi = {10.5802/aif.826}, mrnumber = {84e:60070}, zbl = {0437.60003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1981__31_1_257_0} }
Varopoulos, Nicolas Th. A theorem on weak type estimates for Riesz transforms and martingale transforms. Annales de l'Institut Fourier, Tome 31 (1981) pp. 257-264. doi : 10.5802/aif.826. http://gdmltest.u-ga.fr/item/AIF_1981__31_1_257_0/
[1] Singular integrals and differentiability properties of functions, Princeton University press (1970). | MR 44 #7280 | Zbl 0207.13501
,[2]
, Mat. Zametki, t. 22 No. 5 (1977).[3] On a Theorem of F. and M. Riesz and an Identity of A. Wald. (preprint). | Zbl 0466.31006
,[4] A note on the Hilbert transform, B.A.M.S., 52 (1946), 1082-1086. | MR 8,377d | Zbl 0063.03630
,[5] Quasi-Martingales, Math. Scand., 24 (1969), 79-92. | MR 43 #1265 | Zbl 0193.45502
,[6] Characterizations of H1 by singular integral transforms on martingales and Rn, Math. Scand., 41 (1977), 140-152. | MR 57 #3729 | Zbl 0369.42005
,