Homogeneous hessian manifolds
Shima, Hirohiko
Annales de l'Institut Fourier, Tome 30 (1980), p. 91-128 / Harvested from Numdam

Une variété d’une connexion affine plate est dite hessienne si elle est munie d’une métrique riemannienne qui s’exprime localement g ij = 2 Φ x i x j Φ est une fonction C et {x 1 ,...,x n } est un système de coordonnées locales affines. Soit M une variété hessienne. On montre que si M est homogène, le revêtement universel de M est un domaine convexe dans R n et admet une fibration uniquement déterminée dont la base est un domaine convexe homogène ne contenant aucune droite et dont le fibré est un sous-espace affine de R n .

A flat affine manifold is said to Hessian if it is endowed with a Riemannian metric whose local expression has the form g ij = 2 Φ x i x j where Φ is a C -function and {x 1 ,...,x n } is an affine local coordinate system. Let M be a Hessian manifold. We show that if M is homogeneous, the universal covering manifold of M is a convex domain in R n and admits a uniquely determined fibering, whose base space is a homogeneous convex domain not containing any full straight line, and whose fiber is an affine subspace of R n .

@article{AIF_1980__30_3_91_0,
     author = {Shima, Hirohiko},
     title = {Homogeneous hessian manifolds},
     journal = {Annales de l'Institut Fourier},
     volume = {30},
     year = {1980},
     pages = {91-128},
     doi = {10.5802/aif.794},
     mrnumber = {82a:53054},
     zbl = {0424.53023},
     mrnumber = {597019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1980__30_3_91_0}
}
Shima, Hirohiko. Homogeneous hessian manifolds. Annales de l'Institut Fourier, Tome 30 (1980) pp. 91-128. doi : 10.5802/aif.794. http://gdmltest.u-ga.fr/item/AIF_1980__30_3_91_0/

[1] S.G. Gindikin, I.I. Pjateckii-Sapiro and E.B. Vinberg, Homogeneous Kähler manifolds, in “Geometry of Homogeneous Bounded Domains”, Centro Int. Math. Estivo, 3 Ciclo, Urbino, Italy, 1967, 3-87. | Zbl 0183.35401

[2] P. Dombrowski, On the geometry of the tangent bundles, J. Reine Angew. Math., 210 (1962), 73-88. | MR 25 #4463 | Zbl 0105.16002

[3] M. Goto, Faithful representations of Lie groups I, Math. Japon., 1 (1948), 1-13. | Zbl 0041.36001

[4] J. Helmstetter, Doctorat de 3e cycle “Radical et groupe formel d'une algèbre symétrique à gauche” novembre 1975, Grenoble.

[5] S. Kobayashi, Intrinsic distances associated with flat affine or projective structures, J. Fac. Sci. Univ. of Tokyo, IA 24 (1977), 129-135. | MR 56 #3361 | Zbl 0367.53002

[6] J.L. Koszul, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France, 89 (1961), 515-533. | Numdam | MR 26 #3090 | Zbl 0144.34002

[7] J.L. Koszul, Variétés localement plates et convexité, Osaka J. Math., 2 (1965), 285-290. | MR 33 #4849 | Zbl 0173.50001

[8] H. Shima, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math., 13 (1976), 213-229. | MR 54 #1131 | Zbl 0332.53032

[9] H. Shima, Symmetric spaces with invariant locally Hessian structures, J. Math. Soc. Japan, 29 (1977), 581-589. | MR 56 #9462 | Zbl 0349.53036

[10] H. Shima, Compact locally Hessian manifolds, Osaka J. Math., 15 (1978) 509-513. | MR 510491 | MR 80e:53054 | Zbl 0415.53032

[11] J. Vey, Une notion d'hyperbolicité sur les variétés localement plates, C.R. Acad. Sci. Paris, 266 (1968), 622-624. | MR 236837 | MR 38 #5131 | Zbl 0155.30602

[12] E.B. Vinberg, The Morozov-Borel theorem for real Lie groups, Soviet Math. Dokl., 2 (1961), 1416-1419. | MR 142683 | MR 26 #252 | Zbl 0112.02505

[13] E.B. Vinberg, The theory of convex homogeneous cones, Trans. Moscow Math. Soc., 12 (1963), 340-403. | MR 158414 | Zbl 0138.43301

[14] E.B. Vinberg and S.G. Gindikin, Kaehlerian manifolds admitting a transitive solvable automorphism group, Math. Sb., 75 (116) (1967), 333-351. | Zbl 0172.37803

[15] K. Yoshida, A theorem concerning the semi-simple Lie groups, Tohoku Math. J., 43 (Part II) (1937), 81-84. | JFM 63.1000.03 | Zbl 0018.29802