Soit un domaine borné à frontière régulière, et une fonction harmonique dans . On montre que si les valeurs de à la frontière appartiennent à avec ( étant la mesure de surface à la frontière), est approchable uniformément par des fonctions à variation bornée, et on montre que le résultat ne s’étend pas au cas .
Let be harmonic in a bounded domain with smooth boundary. We prove that if the boundary values of belong to , where and denotes the surface measure of , then it is possible to approximate uniformly by function of bounded variation. An example is given that shows that this result does not extend to .
@article{AIF_1980__30_2_97_0, author = {Dahlberg, Bj\"orn E. J.}, title = {Approximation of harmonic functions}, journal = {Annales de l'Institut Fourier}, volume = {30}, year = {1980}, pages = {97-107}, doi = {10.5802/aif.787}, mrnumber = {82i:31010}, zbl = {0417.31005}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1980__30_2_97_0} }
Dahlberg, Björn E. J. Approximation of harmonic functions. Annales de l'Institut Fourier, Tome 30 (1980) pp. 97-107. doi : 10.5802/aif.787. http://gdmltest.u-ga.fr/item/AIF_1980__30_2_97_0/
[1] Interpolation by bounded analytic functions and the Corona problem, Ann. Math., 76 (1962), 547-559. | MR 141789 | MR 25 #5186 | Zbl 0112.29702
,[2] The Corona Problem, in Lecture Notes in Mathematics, vol 118, Springer Verlag, Berlin, 1969.
,[3] Weighted norm inequalities for the Lusin area integral and the non tangential maximal functions for functions harmonic in a Lipschitz domain, to appear in Studia Math. | MR 592391 | Zbl 0449.31002
,[4] Hp-spaces of several variables, Acta Math., 129 (1972), 137-193. | MR 447953 | MR 56 #6263 | Zbl 0257.46078
and ,[5]
, to appear.[6] Integral inequalities of Poincaré and Wirtinger type for BV functions, Amer. J. of Math., 99 (1977), 1345-1360. | MR 507433 | MR 58 #22443 | Zbl 0416.46025
and ,[7] The radial variation of analytic functions, Duke Math. J., 22 (1955), 235-242. | MR 79093 | MR 18,27g | Zbl 0064.31105
,[8] Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, New Jersey, 1970. | MR 290095 | MR 44 #7280 | Zbl 0207.13501
,[9] BMO functions and the -equation, Pacific J. Math., 71 (1977), 221-273. | MR 508035 | Zbl 0371.35035
,