La norme d’un polynôme trigonométrique , dépasse
The norm of a trigonometric polynomial with non zero coefficients of absolute value not less than 1 exceeds a fixed positive multiple of
@article{AIF_1980__30_2_79_0,
author = {Pichorides, S. K.},
title = {On the $L^1$ norm of exponential sums},
journal = {Annales de l'Institut Fourier},
volume = {30},
year = {1980},
pages = {79-89},
doi = {10.5802/aif.785},
mrnumber = {81j:10058},
zbl = {0432.42001},
language = {en},
url = {http://dml.mathdoc.fr/item/AIF_1980__30_2_79_0}
}
Pichorides, S. K. On the $L^1$ norm of exponential sums. Annales de l'Institut Fourier, Tome 30 (1980) pp. 79-89. doi : 10.5802/aif.785. http://gdmltest.u-ga.fr/item/AIF_1980__30_2_79_0/
[1] , On a theorem of Paley and the Littlewood conjecture, To appear in Arkiv för Matematik.
[2] , On a conjecture of Littlewood concerning exponential sums (I), Bull. Greek Math. Soc., Vol. 18 (1977), 8-16. | MR 80d:10057a | Zbl 0408.10025
[3] , On a conjecture of Littlewood concerning exponential suns (II), Bull. Greek Math. Soc., Vol. 19 (1978), 274-277. | MR 80d:10057b | Zbl 0421.10025
[4] , Trigonometric Series. Vol. I, II. Cambridge University Press, 1968. October 1979.