Pure fields of degree 9 with class number prime to 3
Walter, Colin D.
Annales de l'Institut Fourier, Tome 30 (1980), p. 1-15 / Harvested from Numdam

On détermine des conditions nécessaires et des conditions suffisantes pour que le nombre de classes de Q(n 9) soit premier à 3. Ces conditions n’utilisent que la factorisation en nombres premiers rationnels de n et des congruences mod 27 de ces facteurs premiers. Ils donnent des conditions nécessaires et suffisantes pour presque tout n.

The main theorem gives necessary conditions and sufficient conditions for Q(n 9) to have class number prime to 3. These conditions involve only the rational prime factorization of n and congruences mod 27 of the prime factors of n. They give necessary and sufficient conditions for most n.

@article{AIF_1980__30_2_1_0,
     author = {Walter, Colin D.},
     title = {Pure fields of degree 9 with class number prime to 3},
     journal = {Annales de l'Institut Fourier},
     volume = {30},
     year = {1980},
     pages = {1-15},
     doi = {10.5802/aif.781},
     mrnumber = {82b:12006},
     zbl = {0408.12009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1980__30_2_1_0}
}
Walter, Colin D. Pure fields of degree 9 with class number prime to 3. Annales de l'Institut Fourier, Tome 30 (1980) pp. 1-15. doi : 10.5802/aif.781. http://gdmltest.u-ga.fr/item/AIF_1980__30_2_1_0/

[1] P. Barrucand and H. Cohn, Remarks on principal factors in a relative cubic field, J. Number Theory, 3 (1971), 226-239. | MR 43 #1945 | Zbl 0218.12002

[2] R. Brauer, Beziehungen zwischen Klassenzahlen von Teilkörpern eines galoisschen Körpers, Math. Nachr., 4 (1951), 158-174. | MR 12,593b | Zbl 0042.03801

[3] A. Endô, On the divisibility of the class number of Q(√9n) by 3, Mem. Fac. Sci., Kyushu Univ., A, 30 (1976), 299-311. | MR 54 #5181 | Zbl 0352.12008

[4] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, II, Physica-Verlag, Würzburg/Wien, 1970.

[5] T. Honda, Pure cubic fields whose class numbers are multiples of three, J. Number Theory, 3 (1971), 7-12. | MR 45 #1877 | Zbl 0222.12004

[6] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 257-258. | MR 18,644d | Zbl 0074.03002

[7] C. J. Parry, Class number relations in pure quintic fields, Symposia Mathematica, 15 (1975), 475-485. | MR 52 #8084 | Zbl 0331.12003

[8] C. D. Walter, A class number relation in Frobenius extensions of number fields, Mathematika, 24 (1977), 216-225. | MR 57 #12458 | Zbl 0358.12004

[9] C. D. Walter, Kuroda's class number relation, Acta Arithmetica, 35 (1979), 41-51. | MR 82d:12007 | Zbl 0339.12008

[10] C. D. Walter, The ambiguous class group and the genus group of certain non-normal extensions, Mathematika, 26 (1979), 113-124. | MR 81c:12008 | Zbl 0408.12004