Soit un opérateur pseudo-différentiel classique, d’ordre , de symbole principal non-négatif, sur une variété compacte. On suppose que est hypoelliptique avec perte d’une dérivée et semi-borné inférieurement. On construit alors exp, comme un opérateur intégral de Fourier non classique et on calcule la contribution principale à la distribution asymptotique des valeurs propres de . Ce travail complète une série de travaux en collaboration avec A. Menikoff.
Let be a selfadjoint classical pseudo-differential operator of order with non-negative principal symbol on a compact manifold. We assume that is hypoelliptic with loss of one derivative and semibounded from below. Then exp, , is constructed as a non-classical Fourier integral operator and the main contribution to the asymptotic distribution of eigenvalues of is computed. This paper is a continuation of a series of joint works with A. Menikoff.
@article{AIF_1980__30_2_109_0, author = {Sj\"ostrand, Johannes}, title = {On the eigenvalues of a class of hypo-elliptic operators. IV}, journal = {Annales de l'Institut Fourier}, volume = {30}, year = {1980}, pages = {109-169}, doi = {10.5802/aif.788}, zbl = {0417.47024}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1980__30_2_109_0} }
Sjöstrand, Johannes. On the eigenvalues of a class of hypo-elliptic operators. IV. Annales de l'Institut Fourier, Tome 30 (1980) pp. 109-169. doi : 10.5802/aif.788. http://gdmltest.u-ga.fr/item/AIF_1980__30_2_109_0/
[1] A class of hypoelliptic pseudodifferential operators with double characteristics, Math. Ann., 217 (1975), 165-188. | MR 51 #13774 | Zbl 0306.35032
,[2] Neuer Beweis und Verallgemeinerung der Tauberschen Sätze etc., J. Reine u. Angew. Math., 164 (1931), 27-39. | JFM 57.0262.01 | Zbl 0001.27302
,[3] Lower bounds for pseudo-differential operators, Ark. f. Math., 9 (1971), 117-140. | MR 48 #6735 | Zbl 0211.17102
,[4] Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Comm. P.D.E., 1 (1976), 313-400. | MR 56 #13294 | Zbl 0364.35049
and ,[5] A calculus for Fourier integral operators in domains with boundary and applications to the oblique derivative problem, Comm. P.D.E., 2 (1977), 857-935. | MR 56 #16708 | Zbl 0392.35055
and ,[6] On the eigenvalues of a class of hypoelliptic operators, Math. Ann., 235 (1978), 55-85. | MR 58 #1735 | Zbl 0375.35014
and ,[7] On the eigenvalues of a class of hypoelliptic operators II, Springer L. N., n°755, 201-247. | MR 82m:35114 | Zbl 0444.35019
and ,[8] The eigenvalues of hypoelliptic operators, III, the non semibounded case, Journal d'Analyse Math., 35 (1979), 123-150. | Zbl 0436.35065
and ,[9] Eigenvalues for hypoelliptic operators and related methods, Proc. Inter. Congress of Math., Helsinki, 1978, 445-447.
,