On introduit la classe des -groupes, intermédiaire entre celle des groupes de Lie connexes nilpotents et celle des groupes de Lie connexes résolubles. Soit un groupe de Lie connexe unimodulaire, de centre , tel que ait un centre fini. A quelques restrictions techniques près, on montre qu’un tel groupe a une série discrète de représentations si et seulement s’il se représente sous la forme avec les hypothèses suivantes : a) est un -groupe de centre ; b) est un groupe de Lie réductif connexe, possédant une série discrète; c) Cent est compact; d) on a .
We introduce a new class of connected solvable Lie groups called -group. Namely a -group is a unimodular connected solvable Lie group with center such that for some in the Lie algebra of , the symplectic for on given by is nondegenerate. Moreover, apart form some technical requirements, it will be proved that a connected unimodular Lie group with center , such that the center of is finite, has discrete series if and only if may be written as , , where is a -group with center and is a connected reductive Lie group with discrete series such that Cent is compact.
@article{AIF_1980__30_1_159_0, author = {Anh Nguyen Huu}, title = {Classification of connected unimodular Lie groups with discrete series}, journal = {Annales de l'Institut Fourier}, volume = {30}, year = {1980}, pages = {159-192}, doi = {10.5802/aif.779}, mrnumber = {82a:22016}, zbl = {0418.22010}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1980__30_1_159_0} }
Anh Nguyen Huu. Classification of connected unimodular Lie groups with discrete series. Annales de l'Institut Fourier, Tome 30 (1980) pp. 159-192. doi : 10.5802/aif.779. http://gdmltest.u-ga.fr/item/AIF_1980__30_1_159_0/
[1] Lie groups with square integrable representations, Annals of Math., 104 (1976), 431-458. | MR 55 #5802 | Zbl 0359.22007
,[2] Classification of unimodular algebraic groups with square integrable representations, Acta Math. Vietnam. (to appear). | Zbl 0426.22012
,[3] On square integrable factor representations of locally compact groups, Acta Math. Vietnam. (to appear). | Zbl 0466.22007
and ,[4] Polarization and unitary representations of solvable Lie groups, Invent. Math., 14 (1971), 255-354. | MR 45 #2092 | Zbl 0233.22005
and ,[5] Théorie des groupes de Lie, Vol. 3, Act. Sci. Ind., n° 1226, Hermann, Paris, 1955.
,[6] The discrete series for semisimple Lie groups II. Explicit determination of the characters, Acta Math., 116 (1966), 1-111. | MR 36 #2745 | Zbl 0199.20102
,[7] Invariant eigendistributions on a semisimple Lie group, Trans. A.M.S., 119 (1965), 457-508. | MR 31 #4862d | Zbl 0199.46402
,[8] Unitary representations of group extensions I, Annals of Math., 99 (1958), 265-311. | MR 20 #4789 | Zbl 0082.11301
,[9] The Plancherel formula for non unimodular groups, Abs. Int. Cong. on Func. Analysis, Univ. of Maryland, 1971.
,[10] Square integrable factor representations of locally compact groups, Preprint, Univ. of Calif., Berkeley. | Zbl 0412.22003
,[11] Classification theory of semisimple algebraic groups, Lecture notes in Pure and Appl. Math., Dekker Inc., New York, 1971. | MR 47 #5135 | Zbl 0226.20037
,[12] Séminaire Sophus Lie, 1954-1955, ENS, Secr. math., Paris, 1955.
[13] The Plancherel formula for non unimodular locally compact groups, J. Math. Kyoto Univ., 12 (1972), 179-261. | MR 45 #8777 | Zbl 0241.22017
,[14] L'intégration dans les groupes topologiques et ses applications, 2e éd., Act. Sci. Ind., n° 1145, Hermann, Paris, 1953.
,[15] Square integrable representations of nilpotent groups, Trans. A.M.S., 185 (1973), 445-462. | MR 49 #3033 | Zbl 0274.22016
and ,[16] Representation theory of almost connected groups, Pacific J. of Math., 42, (1972), 453-467. | MR 48 #6317 | Zbl 0242.22008
,[17] La formule de Plancherel pour un groupe de Lie résoluble connexe, Lecture notes, n° 587 (1977), 32-76. | MR 58 #6067 | Zbl 0365.22009
,