Soit une représentation unitaire continue d’un groupe localement compact sur l’espace de Hilbert . Soit la algèbre engendrée par
On obtient le théorème 1 :
Si est -compact et , alors le support de est discret et chaque dans sup est CCR.
Nous utilisons ce résultat dans le cas de la représentation quasi-régulière . Cela nous permet d’obtenir, entre autres résultats, que impliquerait dans plusieurs cas que est compact.
Let be a continuous unitary representation of the locally compact group on the Hilbert space . Let be the algebra generated by
The main result obtained in this paper is Theorem 1:
If is -compact and then supp is discrete and each in supp in CCR.
We apply this theorem to the quasiregular representation and obtain among other results that implies in many cases that is a compact coset space.
@article{AIF_1979__29_4_37_0, author = {Granirer, Edmond E.}, title = {On group representations whose $C^*$ algebra is an ideal in its von Neumann algebra}, journal = {Annales de l'Institut Fourier}, volume = {29}, year = {1979}, pages = {37-52}, doi = {10.5802/aif.765}, mrnumber = {81b:22007}, zbl = {0403.46048}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1979__29_4_37_0} }
Granirer, Edmond E. On group representations whose $C^*$ algebra is an ideal in its von Neumann algebra. Annales de l'Institut Fourier, Tome 29 (1979) pp. 37-52. doi : 10.5802/aif.765. http://gdmltest.u-ga.fr/item/AIF_1979__29_4_37_0/
[1] Multipliers of C*-Algebras, J. of Functional Analysis, 13 (1973), 277-301. | MR 57 #10431 | Zbl 0258.46052
, , ,[2] Nonabelian Pontriagin duality, Duke Math. J., 39 (1972), 451-463. | Zbl 0243.43005
, ,[3] Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire, Thèse, Université Claude-Bernard, Lyon I, 1973.
,[4] Ideal C*-algebras, Duke Math. J., 40 (1973), 241-257. | MR 48 #881 | Zbl 0265.46055
,[5] Weakly almost periodic functions on semigroups, Gordon and Breach, 1970. | MR 41 #8562 | Zbl 0192.48602
,[6] Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 2e edition, 1969. | Zbl 0174.18601
,[7] l'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236. | Numdam | MR 37 #4208 | Zbl 0169.46403
,[8] Moyennes Invariantes et Représentations Unitaires, Lecture notes in mathematics, Springer Verlag, 1972, n° 300. | MR 56 #6279 | Zbl 0249.43004
,[9] Linear Analysis and Representation Theory, Springer Verlag, 1973. | Zbl 0275.43008
,[10] Density theorems for some linear subspaces and some C*-subalgebras of VN(G), Proc. of Symp. on Harmonic Analysis and Function Spaces, Inst. Nazionale di Alta Matematica Rome March 1976, pp. 61-70. | MR 58 #6935 | Zbl 0382.43003
,[11] Homogeneous spaces with finite invariant measure, Annals of Math., 75 (1962), 17-37. | MR 26 #2546 | Zbl 0115.25702
,[12] Factor spaces of solvable groups, Ann. of Math., 60 (1954), 1-27. | MR 15,853g | Zbl 0057.26103
,[13] On topological properties of W*-algebras, Proc. Japan Acad., 33 (1957), 439-444. | MR 20 #5437 | Zbl 0081.11103
,[14] Topology and the duals of certain locally compact groups, Trans. AMS, 150 (1970), 477-489. | MR 42 #422 | Zbl 0204.44001
,[15] W*-algebras and nonabelian harmonic analysis, J. of Functional Analysis, 11 (1972), 17-38. | MR 50 #5365 | Zbl 0242.22010
,[16] On S-subgroups of solvable Lie groups, Amer. J. Math., 92 (1970), 389-397. | MR 41 #8581 | Zbl 0223.22015
,[17] On isolated points in the dual spaces of locally compact groups, Math. Annalen, 218 (1975), 19-34. | MR 52 #5863 | Zbl 0332.22009
,[18] Compactness properties of topological groups III, Trans AMS, 209 (1975), 399-418. | MR 51 #10529 | Zbl 0322.22005
,[19] Homogeneous spaces with invariant measure, Amer. J. Math., 98 (1976), 311-324. | MR 56 #5789 | Zbl 0338.43015
,[20] A separable group having a discrete dual space is compact, J. Functional Analysis, 10 (1972), 131-148. | MR 49 #10816 | Zbl 0252.22012
,[21] A new look at Mackey's imprimitivity theorem, Proc. Conference on Harmonic Analysis Maryland 1971, Springer Lecture Notes, Vol. 266, 42-58. | Zbl 0234.43008
,[22] Induced representations of locally compact groups I, Annals of Math., 55 (1952), 101-139. | MR 13,434a | Zbl 0046.11601
,