Soit une application d’un ouvert dans , avec . Dire que conserve le mouvement brownien, à changement de temps aléatoire près, signifie que est harmonique et que son application linéaire tangente est en chaque point une co-isométrie. Dans le cas , , ces conditions indiquent que correspond à une fonction analytique d’une variable complexe. Nous étudions, essentiellement, les cas , où nous montrons en particulier qu’une telle application ne peut être “intérieure” sans être triviale. Un résultat analogue pour , permettrait de résoudre une conjecture classique sur les fonctions analytiques de deux variables.
Let be a mapping from an open set in into , with . To say that preserves Brownian motion, up to a random change of clock, means that is harmonic and that its tangent linear mapping in proportional to a co-isometry. In the case , , such conditions signify that corresponds to an analytic function of one complex variable. We study, essentially that case , , in which we prove in particular that such a mapping cannot be “inner” if it is not trivial. A similar result for , would solve a classical conjecture on analytic functions of two complex variables.
@article{AIF_1979__29_1_207_0, author = {Bernard, Alain and Campbell, Eddy A. and Davie, A. M.}, title = {Brownian motion and generalized analytic and inner functions}, journal = {Annales de l'Institut Fourier}, volume = {29}, year = {1979}, pages = {207-228}, doi = {10.5802/aif.735}, mrnumber = {81b:30088}, zbl = {0386.30029}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1979__29_1_207_0} }
Bernard, Alain; Campbell, Eddy A.; Davie, A. M. Brownian motion and generalized analytic and inner functions. Annales de l'Institut Fourier, Tome 29 (1979) pp. 207-228. doi : 10.5802/aif.735. http://gdmltest.u-ga.fr/item/AIF_1979__29_1_207_0/
[1] Lectures on Quasi-Conformal Mappings, Van Norstrand, 1966. | MR 34 #336 | Zbl 0138.06002
,[2] Minimal cones and the Bernstein problem, Inventiones Math., 7 (1969), 243-268. | MR 40 #3445 | Zbl 0183.25901
, and ,[3] Eléments d'Analyse, Gauthiers-Villars, 1971, Vol. 4. (English translation : Treatise on Analysis, Academic Press, 1974). | Zbl 0217.00101
,[4] Singularities of Smooth Maps, Nelson, 1967. | MR 38 #6612 | Zbl 0167.19903
,[5] Riemannian Geometry, Princeton, 1949. | MR 11,687g | Zbl 0041.29403
,[6] Harmonic morphisms between Riemannian manifolds, Preprint, Copenhagen University, 1976. | Zbl 0339.53026
,[7] Linear and Quasilinear Elliptic Equations, Nauka Press, Moscow 1964, English translation Academic Press, 1968. | Zbl 0164.13002
and ,[8] Foundations of Modern Potential Theory, Springer-Verlag, 1972. | MR 50 #2520 | Zbl 0253.31001
,[9] Stochastic Integrals, Academic Press, 1969. | MR 40 #947 | Zbl 0191.46603
,[10] Introduction to the Theory of analytic Spaces, Lecture Notes in Mathematics, No. 25, Springer-Verlag, 1966. | MR 36 #428 | Zbl 0168.06003
,[11] Topology of Plane Sets of Points, Cambridge University Press, 2nd. Edition, 1952. | Zbl 0123.39301
,[12] Lectures on Partial Differential Equations, Interscience, 1954. | MR 16,478f | Zbl 0059.08402
,