Estimations pour ¯ dans des domaines non pseudo-convexes
Derridj, Maklouf
Annales de l'Institut Fourier, Tome 28 (1978), p. 239-254 / Harvested from Numdam

Nous étudions les domaines Ω de C n qui satisfont (localement) à l’estimation suivante :

i,k=1nujz¯kC(¯u+¯*u+u),u𝒟0,1(VΩ¯)

V est un voisinage d’un point z 0 du bord Ω.

L’intérêt de cette estimation réside dans son utilisation pour montrer une estimation sous-elliptique. Remarquons qu’elle est toujours satisfaite par les domaines pseudo-convexes, ce qui rend naturel le fait qu’elle soit liée au comportement dans V des parties négatives des valeurs propres de la forme de Levi.

We study the domains in C n , Ω, which satisfy (locally) the following estimate:

i,k=1nujz¯kC(¯u+¯*u+u),u𝒟0,1(VΩ¯)

where V is a neighborhood of a point z 0 in the boundary Ω.

The interest of this estimate is that it is used for proving subelliptic estimates. Remark that it is always satisfied by pseudoconvex domains so it is naturally related to the behavior in V of the negative parts of the eigenvalues of the Levi form.

@article{AIF_1978__28_4_239_0,
     author = {Derridj, Maklouf},
     title = {Estimations pour $\bar{\partial }$ dans des domaines non pseudo-convexes},
     journal = {Annales de l'Institut Fourier},
     volume = {28},
     year = {1978},
     pages = {239-254},
     doi = {10.5802/aif.723},
     mrnumber = {80b:32021},
     zbl = {0377.35057},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_1978__28_4_239_0}
}
Derridj, Maklouf. Estimations pour $\bar{\partial }$ dans des domaines non pseudo-convexes. Annales de l'Institut Fourier, Tome 28 (1978) pp. 239-254. doi : 10.5802/aif.723. http://gdmltest.u-ga.fr/item/AIF_1978__28_4_239_0/

[1] Th. Bloom and I. Graham, A geometric characterization of points of type m on real hypersurfaces, J. Diff. Geom., in Press.

[2] M. Derridj, Régularité pour ∂ dans quelques domaines faiblement pseudo-convexes, J. Diff. Geom., in Press. | Zbl 0435.35057

[3] M. Derridj and D. Tartakoff, Séminaire d'Analyse (P. Lelong), Année 1976, Springer Verlag, n° 578.

[4] K. K. Diederich and J. E. Fornaess, Pseudo-convex domains with real analytic boundary, A paraître.

[5] G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy Riemann complex, Ann. of Math. Studies, Princ. Univ. Press. | Zbl 0247.35093

[6] L. Hormander, L2-estimates and existence theorems of the operator, Acta Math., 113 (1965). | MR 31 #3691 | Zbl 0158.11002

[7] L. Hormander, Hypoelliptic second order differential equations, Acta Math., 119 (1967). | MR 36 #5526 | Zbl 0156.10701

[8] J. J. Kohn, Subellipticity on pseudo-convex domains with isolated degeneracies, Proc. Nat. Acad. Sci., Vol. 71, n° 67. | MR 50 #7840 | Zbl 0284.35055

[9] J. J. Kohn, Sufficient conditions for subellipticity on weakly pseudo-convex domains, Proc. Nat. Acad. Sci., vol. 74, n° 6. | MR 57 #6512 | Zbl 0349.35011

[10] J. J. Kohn, Pseudo-differential operators and non elliptic problems, C.I.M.E., Stresa (1968).