Comparisons of kernel functions boundary Harnack principle and relative Fatou theorem on Lipschitz domains
Wu, Jang-Mei G.
Annales de l'Institut Fourier, Tome 28 (1978), p. 147-167 / Harvested from Numdam

Nous obtenons trois théorèmes sur les fonctions harmoniques dans un domaine lipschitzien : un principe du type de Harnack sur la frontière ; des inégalités géométriques pour le noyau de Poisson d’un tel domaine ; un théorème relatif de Fatou. Les outils essentiels sont le principe du maximum, l’inégalité de Harnack, et la dérivation des mesures.

On a Lipschitz domain D in R n , three theorems on harmonic functions are proved. The first (boundary Harnack principle) compares two positive harmonic functions at interior points near an open subset of the boundary where both functions vanish. The second extends some familiar geometric facts about the Poisson kernel on a sphere to the Poisson kernel on D. The third theorem, on non-tangential limits of quotient of two positive harmonic functions in D, generalizes Doob’s relative Fatou theorem on a sphere. The main tools are maximum principle, Harnack inequality and differentiation of measures.

@article{AIF_1978__28_4_147_0,
     author = {Wu, Jang-Mei G.},
     title = {Comparisons of kernel functions boundary Harnack principle and relative Fatou theorem on Lipschitz domains},
     journal = {Annales de l'Institut Fourier},
     volume = {28},
     year = {1978},
     pages = {147-167},
     doi = {10.5802/aif.719},
     mrnumber = {80g:31005},
     zbl = {0368.31006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1978__28_4_147_0}
}
Wu, Jang-Mei G. Comparisons of kernel functions boundary Harnack principle and relative Fatou theorem on Lipschitz domains. Annales de l'Institut Fourier, Tome 28 (1978) pp. 147-167. doi : 10.5802/aif.719. http://gdmltest.u-ga.fr/item/AIF_1978__28_4_147_0/

[1] A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien, Ann. Inst. Fourier, (to appear). | Numdam | Zbl 0377.31001

[2] A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions II, Proc. Cambridge Philos. Soc., 42 (1946), 1-10. | MR 7,281e | Zbl 0063.00353

[3] M. Brelot, Remarques sur les zéros à la frontière des fonctions harmoniques positives, Un. Mat. Ita., Boll., Suppl., Ser. 4, 12 (1975), 314-319. | MR 54 #7823 | Zbl 0338.31004

[4] M. Brelot et J. L. Doob, Limites angulaires et limites fines, Ann. Institut Fourier, 13, 2 (1963), 395-415. | Numdam | MR 33 #4299 | Zbl 0132.33902

[5] B. Dahlberg, On estimates of harmonic measure, Arch. Rational Mech. Anal., 65, N° 3 (1977), 275-288. | MR 57 #6470 | Zbl 0406.28009

[6] J. L. Doob, A relativized Fatou theorem, Proc. Nat. Acad. Sc., 45 (1959), N° 2, 215-222. | MR 107095 | MR 21 #5822 | Zbl 0106.07801

[7] K. Gowrisankaran, Fatou-Naim-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier, 16, 2 (1966), 455-467. | Numdam | MR 35 #1802 | Zbl 0145.15103

[8] R. A. Hunt and R. L. Wheeden, On the boundary values of harmonic functions, Trans. Amer. Math. Soc., 132 (1968), 307-322. | MR 37 #1634 | Zbl 0159.40501

[9] R. A. Hunt and R. L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc., 147 (1970), 507-527. | MR 43 #547 | Zbl 0193.39601

[10] J. T. Kemper, A boundary Harnack principle for Lipschitz domains and the principle of positive singularities, Comm. Pure Applied Math., 25 (1972), 247-255. | MR 45 #2193 | Zbl 0226.31007

[11] J.-M. Wu, On functions subharmonic in a Lipschitz domain, Proc. Amer. Math. Soc. (to appear). | Zbl 0377.31007