Pour un feuilletage de codimension sur une variété, définit la classe de Godbillon-Vey. On démontre que définit une certaine classe de cohomologie, via la bicomplexe de Cech.
For a codimension foliation on a manifold, defines the Godbillon-Vey class. We show that itself defines a certain cohomology class, via the Cech bicomplex.
@article{AIF_1978__28_3_217_0, author = {Kitahara, Haruo and Yorozu, Shinsuke}, title = {On the Cech bicomplex associated with foliated structures}, journal = {Annales de l'Institut Fourier}, volume = {28}, year = {1978}, pages = {217-224}, doi = {10.5802/aif.711}, mrnumber = {80c:57016a}, zbl = {0368.57006}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1978__28_3_217_0} }
Kitahara, Haruo; Yorozu, Shinsuke. On the Cech bicomplex associated with foliated structures. Annales de l'Institut Fourier, Tome 28 (1978) pp. 217-224. doi : 10.5802/aif.711. http://gdmltest.u-ga.fr/item/AIF_1978__28_3_217_0/
[1] Lectures on characteristic classes and foliations, Lecture Notes in Math., Springer, 279 (1972), 1-94. | MR 50 #14777 | Zbl 0241.57010
,[2] Un invariant des feuilletages de codimension 1, C.R. Acad. Sci., Paris, 273 (1971), A92-95. | MR 44 #1046 | Zbl 0215.24604
and ,[3] Foliated bundles and characteristic classes, Lecture Notes in Math., Springer, 493 (1975). | MR 53 #6587 | Zbl 0308.57011
and ,[4] Sur l'homomorphisme de Chern-Weil local et ses applications au feuilletage, C.R. Acad. Sci., Paris, 281 (1975), A703-706. | MR 53 #11628 | Zbl 0318.57028
and ,[5] Sur certaines propriétés topologiques des variétés feuilletées, Hermann (1952). | MR 14,1113a | Zbl 0049.12602
,[6] On the spectral sequences associated to foliated structures, Nagoya Math. J., 38 (1970), 53-61. | Zbl 0193.52602
,[7] On the cohomology of bigraded forms associated with foliated structures, Bull. Soc. Math. Grèce, 15 (1974), 68-76. | MR 58 #31107 | Zbl 0321.57016
,[8] Sur la multiplicativité de l'homomorphisme de Chern-Weil local, C.R. Acad. Sci., Paris, 280 (1975), A369-371. | MR 52 #9246 | Zbl 0301.57011
, and ,