On montre que si un espace de Fréchet a la propriété de Radon-Nikodym, alors la possède aussi, pour .
It is proved that if a Frechet space has property, then also has property, for .
@article{AIF_1978__28_3_203_0, author = {Khurana, Surjit Singh}, title = {Radon-Nikodym property for vector-valued integrable functions}, journal = {Annales de l'Institut Fourier}, volume = {28}, year = {1978}, pages = {203-208}, doi = {10.5802/aif.709}, mrnumber = {80f:46043}, zbl = {0353.46023}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1978__28_3_203_0} }
Khurana, Surjit Singh. Radon-Nikodym property for vector-valued integrable functions. Annales de l'Institut Fourier, Tome 28 (1978) pp. 203-208. doi : 10.5802/aif.709. http://gdmltest.u-ga.fr/item/AIF_1978__28_3_203_0/
[1] The Radon-Nikodym property for Banach space valued measures, Rocky Mountain J. Math., 6 (1976), 1-46. | Zbl 0339.46031
, , .,[2] Topological rings of sets, continuous set functions, integration I, II, III, Bull. Acad. Polon. Sci., Ser. Math. Astron. Phys., 20 (1972), 269-276, 277-286, 439-445. | Zbl 0249.28004
,[3] Dentabilité, points extrémaux et propriété de Radon-Nikodym, Bull. Soc. Math., 99 (1975), 129-134. | Zbl 0325.46036
,[4] Dentabilité, points extrémaux et propriété de Radon-Nikodym, C.R. Acad. Sci., Paris, 280 (1975), 575-577. | Zbl 0295.46068
,[5] Topological vector spaces, Macmillan, New York (1971). | MR 49 #7722 | Zbl 0217.16002
,[6] The Radon-Nikodym theorem for Lebesgue-Bochner function spaces, J. Func. Anal., 24 (1977), 276-279. | MR 56 #9246 | Zbl 0341.46019
,[7] On locally convex spaces with basis, Doklady Acad. Sci. USSR, 195 (1970), 1278-1281, English Translation : Soviet Math., 11 (1970), 1672-1675. | Zbl 0216.40701
,[8] Convexité dans les espaces vectoriels topologiques généraux, Disser. Math., 131 (1976). | MR 54 #11028 | Zbl 0331.46001
,