Soit , algèbre de convolution des mesures de Radon bornées sur le groupe abélien localement compact . Pour que soit fermé dans (ou, ce qui revient au même, pour que soit fermé), il faut et il suffit que soit la convolution d’une mesure inversible et d’une mesure idempotente.
is a locally compact abelian group, the convolution algebras of bounded Radon measures on . The following statements are equivalent: a) is closed b) is closed c) , where is idempotent and invertible.
@article{AIF_1978__28_3_143_0, author = {Host, Bernard and Parreau, Fran\c cois}, title = {Sur un probl\`eme de I. Glicksberg : les id\'eaux ferm\'es de type fini de $M(G)$}, journal = {Annales de l'Institut Fourier}, volume = {28}, year = {1978}, pages = {143-164}, doi = {10.5802/aif.706}, mrnumber = {80b:43003}, zbl = {0368.43001}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1978__28_3_143_0} }
Host, Bernard; Parreau, François. Sur un problème de I. Glicksberg : les idéaux fermés de type fini de $M(G)$. Annales de l'Institut Fourier, Tome 28 (1978) pp. 143-164. doi : 10.5802/aif.706. http://gdmltest.u-ga.fr/item/AIF_1978__28_3_143_0/
[1] Riesz products and generalized characters, Proc. London Math. Soc., (3) 30 (1975), 209. | MR 51 #8737 | Zbl 0325.43003
,[2] Bounded projections on Fourier-Stieltjes transforms, Proc. Amer. Math. Soc., 31, n° 1 (1972), 122. | MR 44 #5718 | Zbl 0242.43007
et ,[3] Locally compact subgroups of the spectrum of the measure algebra, I, Semigroup Forum, 3 (1971), 95, II, Semigroup Forum, 3 (1971), 267. III, Semigroup Forum, 5 (1972), 65. | MR 46 #608 | Zbl 0227.43004
et ,[4] When is μ * L1 closed ? Trans. Amer. Math. Soc., 160 (1971), 419. | MR 44 #5721 | Zbl 0241.43005
,[5] Fourier-Stieltjes transforms with an isolated value, Conference on harmonic analysis, Maryland (1971), Lecture Notes in Math., n° 266, Springer-Verlag. | Zbl 0265.43006
,[6] Fourier analysis on groups, Interscience tracts in Math., n° 12, Interscience, New-York (1962). | MR 27 #2808 | Zbl 0107.09603
,[7] Measure algebras, Regional conference series in Math., n° 16, Conference Board of the Mathematical Sciences (1973). | MR 55 #979 | Zbl 0269.28001
,