Exposé on a conjecture of Tougeron
Becker, Joseph
Annales de l'Institut Fourier, Tome 27 (1977), p. 9-27 / Harvested from Numdam

Une algèbre d’homomorphismes d’anneaux localisés affines d’une variété algébrique est continue par rapport à la topologie de Krull. Elle peut être ni ouverte ni fermée. Cependant, on montre que l’image induite sur l’anneau local analytique associé est également ouverte et fermée par rapport à la topologie de Krull. Afin de démontrer ceci, on prouve la conjecture suivante de Tougeron : si η est une courbe analytique sur un ensemble analytique V et si f est une série formelle de puissances dont la restriction à toute courbe η sur V dans un voisinage de η (topologie de Krull) est convergente, alors la restriction de f à V est convergente.

An algebra homomorphism of the locatized affine rings of an algebraic variety is continuous in the Krull topology of the respective local rings. It is not necessarily open or closed in the Krull topology. However, we show that the induced map on the associated analytic local rings is also open and closed in the Krull topology. To do this we prove a conjecture of Tougeron which states that if η is an analytic curve on an analytic variety V and f is a formal power series which is convergent when restricted to all curves η on V near η (in the Krull topology), then f is convergent when restricted to V.

@article{AIF_1977__27_4_9_0,
     author = {Becker, Joseph},
     title = {Expos\'e on a conjecture of Tougeron},
     journal = {Annales de l'Institut Fourier},
     volume = {27},
     year = {1977},
     pages = {9-27},
     doi = {10.5802/aif.670},
     mrnumber = {58 \#10904},
     zbl = {0337.14002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1977__27_4_9_0}
}
Becker, Joseph. Exposé on a conjecture of Tougeron. Annales de l'Institut Fourier, Tome 27 (1977) pp. 9-27. doi : 10.5802/aif.670. http://gdmltest.u-ga.fr/item/AIF_1977__27_4_9_0/

[1] S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, Academic Press, 1966. | MR 36 #164 | Zbl 0147.20504

[2] S. Abhyankar and M. Vander Put, Homomorphism of analytic local rings, Creile's J., 242 (1970), 26-60. | Zbl 0193.00501

[3] M. Artin, On solutions to analytic equations, Invent. Math., 5 (1968), 277-291. | MR 38 #344 | Zbl 0172.05301

[4] A. M. Gabrielov, The formal relations between analytic functions, Funck, Analiz. Appl., 5 (1971), 64-65. | MR 46 #2073 | Zbl 0254.32009

[5] A. M. Gabrielov, Formal relations between analytic functions, Izv. Akad. Nauk. SSR, 37 (1973), 1056-1088. | Zbl 0297.32007

[6] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math., 79 (1964), 109-326. | MR 33 #7333 | Zbl 0122.38603

[7] M. Nagata, Local Rings, Interscience Publishers, 1962. | MR 27 #5790 | Zbl 0123.03402

[8] J. C. Tougeron, Courbes analytiques sur un germe d'espace analytique et applications, Ann. Inst. Fourier, Grenoble, 26, 2 (1976), 117-131. | Numdam | MR 54 #3011 | Zbl 0318.32005